摘要 - 我们的自动电动汽车充电设置是一个自动供电单元,无需人工服务。该系统旨在促进现有的电网基础架构。该系统使用Raspberry Pi作为我们的主要控制器板,并在安装在充电器外壳上的LCD显示屏上托管用户界面。PI板与我们的自定义PILOT PCB接口,以与电动汽车电池管理系统进行通信,以协商汽车电池的充电速度,容量并执行安全检查。用户可以选择AC 1,2级或DC 3级充电。系统使用30A继电器电路将电池与电源隔离开来,直到完成所有必要的支票和付款过程。RazorPay是我们用于付款交易的实时支付网关。用户完成手续后,充电过程将开始。我们还开发了一个充电监视系统,该系统将帮助用户跟踪电池充电百分比和LCD显示屏上剩余的充电时间。The station has emergency Kill Switches and Emergency Stop buttons mounted on the housing to address safety concerns that arise on the advert of damaged high power output utilities, when engaged the entire system will kill all the power inputs from the grid so that any fault can be safely repaired without risk of electrocution.For our implementation and testing we have built a 18650 NMC chemistry 3S5P Battery pack with a 3S BMS.该单元使用3级AC充电SAE(汽车工程协会)标准,以确保服务的安全性和质量。
收到日期:2020 年 1 月 15 日。接受日期:2020 年 3 月 15 日。最终版本:2020 年 5 月 25 日摘要本文提出了一种用于串联架构混合储能系统的非线性控制结构,该系统调节直流总线电压(输出电压)并确保电池电流满足电流斜率限制。提出的解决方案分为两个阶段,在第一阶段,电池连接到为辅助电容器供电的降压/升压转换器。在第二阶段,辅助电容器通过第二个降压/升压转换器连接到直流总线。两个转换器均使用级联控制系统进行调节,其中内环是电感器电流的滑模控制器,第一和第二转换器中的外环分别设计用于限制电池电流的斜率和调节直流总线电压。本文提供了控制器的设计过程,并通过电源系统在充电、放电和待机模式下的仿真结果验证了其性能。关键词:电池;电容器;降压/升压转换器;当前转换速率;滑模控制。概述 该文章涉及一系列非线性控制系统的结构,包括直流母线电压(电压)的张力控制和电池充电速度限制的控制科连特。解决方案是连接电池和降压/升压转换器以及辅助电容器。在第二个中,辅助电容器连接到直流总线和第二个转换器降压/升压。转换器使用级联控制系统、内部控制器、电感器模式、外部启动器和第二个转换器,以限制电池和电池的速度。 DC 巴士上的常规张力。本节阐述了控制装置的处理过程和仿真结果的验证,考虑了操作方式、卸载和操作方式中的操作能力系统。
到 2030 年 阿姆斯特丹和德克萨斯州休斯顿 – 2024 年 12 月 5 日 – Stellantis NV 和 Zeta Energy Corp. 今天宣布了一项联合开发协议,旨在推进电动汽车应用的电池技术。此次合作旨在开发具有改变游戏规则的重量能量密度的锂硫电动汽车电池,同时实现与当今锂离子技术相当的体积能量密度。对于客户而言,这意味着电池组可能重量更轻,但可用能量与当代锂离子电池相同,从而实现更大的续航里程、更好的操控性和更高的性能。此外,该技术还有望将快速充电速度提高 50%,使电动汽车的拥有更加便捷。预计锂硫电池每千瓦时价格将不到目前锂离子电池的一半。Stellantis 首席工程和技术官 Ned Curic 表示:“我们与 Zeta Energy 的合作是我们推进电气化战略的又一步,我们致力于提供清洁、安全和价格合理的汽车。” “锂硫等突破性电池技术可以支持 Stellantis 实现 2038 年实现碳中和的承诺,同时确保我们的客户享受最佳续航里程、性能和经济实惠。” “我们非常高兴能与 Stellantis 合作开展这个项目,”Zeta Energy 首席执行官 Tom Pilette 表示。“Zeta Energy 的锂硫电池技术与 Stellantis 在创新、全球制造和分销方面无与伦比的专业知识相结合,可以显著提高电动汽车的性能和成本状况,同时提高电池和电动汽车的供应链弹性。” 这些电池将利用废料和甲烷生产,二氧化碳排放量远低于任何现有电池技术。Zeta Energy 电池技术旨在在现有的超级工厂技术内制造,并将利用欧洲或北美的短而完全国内的供应链。
我们的自动电动汽车充电站是一个自动供电单元,不需要人类服务人员。该系统旨在促进现有的电网基础架构。该系统使用Raspberry Pi作为我们的主要控制器板,并在安装在充电器外壳上的LCD显示屏上托管用户界面。PI板与我们的自定义PILOT PCB接口,以与电动汽车电池管理系统进行通信,以协商汽车电池的充电速度,容量并执行安全检查。用户可以选择AC 1、2或DC 3级充电。系统使用30A继电器电路将电池与电源隔离开来,直到完成所有必要的支票和付款过程。RazorPay是我们用于付款交易的实时支付网关。用户完成手续后,充电过程将开始。我们还开发了一个充电监视系统,该系统将帮助用户跟踪电池充电百分比和LCD显示屏上剩余的充电时间。车站有紧急杀戮开关和安装在外壳上的紧急停止按钮,以解决损坏的高功率输出公用事业广告中出现的安全问题,当订婚时,整个系统将杀死网格中的所有功率输入,以便可以安全地修复任何故障而不会出现电动造成电动的风险。为了实施和测试,我们已经建造了一个18650 NMC化学3S5P电池组,其3S BMS。该单元使用3级AC充电SAE(汽车工程协会)标准,以确保服务的安全性和质量。关键字:电动汽车,电池,电池充电,电流充电,直流充电,锂离子电池,充电站,J1772,电池管理系统,电池监控系统。版权所有©2024作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用,不受限制地使用,分发和再现,以提供原始作者和源头。I.简介A.概述1)电池拓扑
4工程科学系,Marathwada Mitra Mandal技术研究所,Lohgaon,Pune-47摘要。电动汽车(EV)在节约能源,减少排放和保护环境中与燃料动力相比,更有效地脱颖而出。因此,随着他们在运输行业发现更广泛的应用,其意义继续增长。随着它们每天的使用增加,广泛采用的现实是普遍采用的现实。在向汽车部门内的电子革命转移时,对电动汽车的充电方式成为关注点。这项全面的综述研究了电动电池充电技术的最新进步和持续的挑战。本文分析了各种充电方法,包括导电,电力和电池交换系统,评估其技术特征,实施挑战以及对充电基础设施的影响。讨论了快速充电协议,无线电源传输效率和智能电网集成的关键发展。提出的关键挑战包括充电时间优化,基础架构可伸缩性,标准化问题和网格稳定性问题。该评论还探讨了新兴技术,例如动态无线充电以及它们对未来电动汽车采用的潜在影响。最后,本文确定了研究差距,并提出了改进EV充电技术的未来方向。关键字 - 电动车辆,电池,充电方法1简介电动汽车充电与我们如何为电动汽车供电。这项系统评价为研究人员,行业从业人员和政策制定者提供了宝贵的见解,致力于推进可持续的运输解决方案。有不同的方式来充电M,例如在家中慢电荷(1级),在家或公共电台(2级)充电(2级),以及在道路上快速的顶级收费(快速充电或DC充电)。1)1级充电器:这些充电器用于120伏交流区。这些充电器较慢,但方便在家过夜充电。2)2级充电器:该充电器在240伏交流电源上运行,这些充电源比1级可提供更快的充电速度,并且通常在家庭,工作场所和公共场所发现3)快速充电器(DC充电器):这些高速充电器使用直流电流(DC),并且比1和1级充电器更快。它们主要安装在公共充电站。
“Gheorghe Asachi” 雅西技术大学,电气工程学院,电气驱动和工业自动化系,23 Prof. D. Mangeron Street,700050 雅西,罗马尼亚 摘要 如今,随着技术的发展,储能系统已成为汽车行业关注的焦点。旨在通过不同的方法开发绿色能源系统来为电动汽车供电。在过去的几年中,已经测试并实施了几种储能系统,但每种解决方案在基础设施、充电站、充电速度或自主性方面都有优点和缺点。本文提出研究一种混合能源系统的电源管理策略,该系统由光伏板 (PV) 作为主电源以及超级电容器和电池组成。由于功率密度不同,后两种储能设备将提供稳定和瞬态的功率需求。对于混合储能系统的每个电源,都描述了动态和数学模型,并提出了一种功率共享策略。实验台是本文的主要贡献,是使用低电压和低电流小规模制造的。本文的全部目的是构建一个由微控制器 ArduinoNano 控制的能源管理系统。本研究的总体目标是根据现有能源的特性分析系统中现有能源之间的能量分配。在模拟过程中,每个储能设备在充电或放电模式下占主导地位,并且将开发和研究用于共享能量的不同控制策略。 关键词:电池、储能系统、混合系统设计、超级电容器 收到日期:2019 年 3 月;最终修订日期:2019 年 9 月;接受日期:2019 年 9 月;以最终编辑形式发布:2020 年 1 月 1. 简介 近年来,研究以绿色能源为导向,产生了一些可以减少对化石燃料依赖的有前景的技术。绿色能源来自自然资源,是可再生的,对环境的影响比产生污染物的化石燃料小得多(Novelli 等人,2019 年)。绿色能源可以在所有主要使用领域取代化石燃料,包括电力、水和空间供暖或汽车。从这些考虑出发,人们对不同领域(如公共交通)的绿色能源的关注度越来越高,* 所有通信应联系作者:电子邮件:florin.rusu@tuiasi.ro;电话:+40745832900
索引词 – 太阳能光伏电源、电池、LED、超级电容器、双向 DC/DC 转换器。简介空气污染是使用汽油、柴油等化石燃料的传统汽车所带来的危险后果之一。由于快速的城市化导致交通拥堵,污染变得更加严重。为了获得无污染的环境,建议在车辆系统中增加可再生资源的使用。在汽车领域更多地使用无污染排放的电动汽车将减少化石燃料的消耗并保护环境。在过去的几年里,人们对电动汽车 (EV) 和混合动力电动汽车 (HEV) 产生了浓厚的兴趣,因为它们可以在减少各种交通工具的温室气体排放方面发挥重要作用,因此有可能成为未来内燃机汽车的替代品。如今,为了与加油站竞争,电池的充电速度应该尽可能快。风能和太阳能等可再生能源是最可用的资源,但由于这些能源可用的电力具有间歇性,因此使用混合储能系统。混合储能系统由电池和超级电容器组成,可提高电池的充电和放电速率,从而延长电池寿命。它展示了太阳能电池板和电池的相互作用,这样就可以从太阳能系统连续充电。这种配置代表太阳能系统不切实际,并且倾向于低效运行。研究了电池和超级电容器的混合。它介绍了电动汽车中光伏板 - 电池 - 超级电容器混合系统的运行。介绍了双向 DC/DC 转换器的方法,以便电池的放电电流应在限制范围内。研究了超级电容器的瞬态、充电、放电模式。在现有电动汽车的改进结构中,将与超级电容器和电池组合一起提供高效的性能。超级电容器用于提供启动和过载期间所需的大电流,并有助于提高电池的充电状态。该项目由六个部分组成。第一部分包括提出的方法,第二部分包括框图。第三部分描述了电路拓扑。第四部分详细描述了使用 MATLAB 进行仿真,第五部分给出了仿真结果。第六部分是结论和结果。
摘要无线电力传输(WPT)技术的最新进展为消费者和行业提供了更方便,高效和智能的电动汽车(EV)和智能设备(SDS)(例如智能手机,无人机,机器人和物联网)的收费。WPT已被采用,以免手工频繁地进出充电。仅凭重型电池就无法解决所有移动物体的饥饿能量问题,最终应该为此充电。在本教程中,首先简要介绍了包括电感功率传递(IPT)在内的WPT的基本原理,并解释了主要的WPT理论,例如耦合线圈模型,Gyrator电路模型,磁性镜像模型和一般统一的动态词曲模型。电动汽车的WPT进展得到了广泛的解释,它们分类为固定的电动汽车(SCEV)和道路驱动电动汽车(RPEV)。SCEV由于便利性和安全性而变得越来越吸引人。此外,由于电动汽车市场份额和可再生能源的市场份额迅速增加,电动汽车和网格的互操作性变得非常重要。电动汽车不再是简单的能源消费者,而是电网的能源提供者。WPT是一种有前途的解决方案,可以在停放时自动将电动汽车与网格连接。这是SCEV作为可互操作系统的灵活手段的潜在贡献。详细解决了线圈设计,大容忍度充电,补偿电路和异物检测(FOD)问题。也总结了全球技术发展的最新进展。rpevs没有严重的电池问题,例如大,重,昂贵且昂贵的电池组以及较长的充电时间,因为它们在移动时直接从道路上获得电源。通过创新的半导体开关,更好的线圈设计,巷道构造技术和更高的操作频率的优点,已提高了WPTSS的功率转移能力,效率,电磁场(EMF),气隙,大小,重量和成本。引入了WPT的最新进展。SD的WPT中的进步被解释了,根据操作环境,它们彼此之间的不同。智能手机是WPT中最成功的应用程序,现在正在不断发展,以获得太空中的更多收费自由。由于分布式和物联网的多种性质,WPT的广泛领域非常具有挑战性。各种动力水平和耐力时间的各种无人机和机器人需要具有足够快速的充电速度,并具有位置自由度。最近的技术发展将解释。解决了WPT问题的未来,其中包括可互操作的无线电动汽车,更长的距离IPT,3D无线充电器和合成的磁场聚焦(SMF)。
先进锂离子电池和技术的开发通常解决以下四个目标之一:1)创造更高的体积能量密度和/或比能量/功率,2)赋予本质上更安全的化学性质,3)实现更快的充电速度,和4)使用价格较低但性能具有竞争力/接近竞争力的电池。当然,其他因素也会发挥作用,这取决于目标市场类型和全球供应的可用性;然而,为了广泛采用,上述要点/标准仍然很重要。锂离子在商业上已在通信和运输 (EV) 应用行业中根深蒂固。如今,轻微的迭代(主要是电解质定义的)正在逐步提高安全性、成本和循环或日历寿命。最后一点,日历寿命,是能量密度极高的锂离子电池经常被忽视的一点,因为它们在较高电荷(OCV 条件)和高温下具有反应性。虽然循环寿命与容量/能量性能下降之间存在争议,但重新利用电池本身或在电池寿命结束时回收内部化学成分的尝试在该领域已大大增加。希望在回收循环中也能考虑能源中性过程。尽管如此,能源存储领域相当大,这一追求取决于推动该领域朝着许多方向之一迈进,朝着更崇高的目标迈进。因此,下一代电池和技术的追求必须更深入地研究新的和新颖的化学和电化学,以创造一个中性、无碳环境的世界,一个仅靠太阳能和风能等可再生能源就能满足能源需求的世界。因此,电力和化学在我们这个世界中的应用是 21 世纪的杰作。钠离子电池 (SIB) 进入电池领域让我们认识到预知由锂离子衍生的非水 (电) 化学知识的价值,这可以加快研究方向并缩短开发时间。在过去 10 年中,有关 SIB 的出版物数量大幅增长,这确实代表了一种“超越锂离子”的电池系统方法;然而,这种方法的固有能量密度可能较低。接近 250 Wh/kg 或相当于当今市场上最好的锂离子电池的 SIB 能量密度尚未得到证实/发现。然而,与锂离子相比,电池组建模确实表明生产和原材料提取成本更低,以及材料加工所需的能量更低(以成本/kWh 计算)。如果 SIB 的成本低于石墨/LFP (LiFePO 4 ),同时具有相同的能量密度、寿命、性能和安全性,那将会很有趣,而且肯定具有竞争力。在纸面上这很容易陈述,但挑战在于在现场展示这种比较。我们期待继续开发新的 SIB 阴极和阳极材料的相空间,新的电解质、盐和其他 SIB 技术和特性将引起人们对这个快速发展领域的兴趣。
抽象背景由于过去十年的技术进步,电动汽车市场已迅速扩展,关键的推动力是开发具有更高能量密度,更快充电速度和寿命更长的高性能电池。建筑设备行业在电气化方面面临着独特的挑战,包括高功率需求,延长的运营时间以及最少的停机时间。为了应对这些挑战,沃尔沃建筑设备正在调查电池交换系统解决方案,该解决方案允许快速换台,减少停机时间和与机器的脱钩寿命。这项研究的目的是设计用于电池交换系统的电池组,同时回答以下研究问题:RQ1:在设计用于建筑设备的电池组时,电池模块,机架和辅助系统的哪种配置可实现最高的能量密度?rq2:设计电池模块,机架和辅助系统以实现用于施工设备的电池组的最高能量密度时,应考虑哪些因素?方法这个项目遵循Ulrich等人的有限版本。的(2019)产品开发过程,重点介绍了电池交换系统的概念开发和系统级设计。采用了一种归纳研究方法,从访谈,文献,文件和会议中收集了定性和定量数据,以对项目挑战产生整体理解。使用诸如前向和向后滚雪球之类的技术,使用多个数据库中的相关关键字进行了结构化文献审查。数据分析方法(包括对话分析)被用来构建和分析收集的数据,确保通过三角测量确保有效性和可靠性,并与沃尔沃的专家进行交叉引用。实证研究是通过基准测试和案例研究进行的,从内部文档和与产品开发人员进行沟通的规格和定性见解提供了定量数据。这些发现构成了迭代概念生成过程,强调了在早期阶段探索各种可能性的重要性。结论设计过程涉及评估先前的电池组解决方案,这些解决方案在预定义的约束中工作,例如使用特定的外壳,内部开发的电池模块,辅助组件,同时满足一组利益相关者的需求。由于电池组有新的内部布局,因此也开发了一些支持电池模块的辅助组件和一个支撑电池模块的机架。这导致了一个概念电池组,从理论上讲,其能量密度比以前的电池组解决方案高30%。提出的解决方案使沃尔沃建筑设备能够通过在给定约束内最大化存储容量来提供更长的运行时的机器和提高生产率。关键字:电池交换,电池组,产品开发,概念生成,建筑设备,设计,电池模块布局。