间充质基质细胞(MSC)在数百种临床试验中探索了各种疾病的治疗及其愈合特性的巨大潜力。这些小径主要集中于免疫逻辑和神经系统疾病以及再生医学。脂肪组织是梅森辣椒基质细胞的丰富来源,也是获得和培养脂肪衍生的MSC(AD-MSC)的方法。AD-MSC活动的临床前测试的有希望的结果促使临床试验进一步导致AD-MSC批准用于治疗Crohn疾病和SubCU散布组织缺陷中复杂的骨瘘。但是,AD-MSC异质性以及各种制造方案或不同的策略以提高其活动,因此需要标准化的质量控制程序和预期细胞产品的安全评估。高分辨率转录方法最近引起了人们的关注,因为它们可以深入了解单个细胞的基因表达谱,有助于解构细胞层次结构和分化轨迹,并了解组织内的细胞细胞相互作用。本文介绍了评估AD-MSC治疗的安全性和功效的完整临床试验的全面概述,以及当前对人类AD-MSC的单细胞研究。此外,我们的工作强调了单细胞研究在阐明细胞作用机制并预测其thera thera peutic效应方面的重要性。
肝细胞癌(HCC)是世界上与癌症相关死亡的第三主要原因。人类羊水间充质干细胞(HAMSC)的表征是多能性,低免疫原性和无肿瘤性的特征。,HAMSC的免疫抑制和抗炎作用使其适合治疗HCC。在这里,我们报告说,通过静脉注射给药的HAMSC通过抑制细胞增殖并用HEPG2细胞诱导肿瘤小鼠的细胞凋亡,从而显着抑制HCC。用GFP标记的HAMSC进行的细胞跟踪实验表明,干细胞具有迁移到肿瘤部位抑制肿瘤生长的能力。重要的是,HAMSC和条件培养基(HAMSC-CM)在体外具有相似的抗肿瘤作用,这表明HAMSC衍生的细胞因子可能参与其抗肿瘤作用。抗体阵列测定法显示,HAMSC高度表达的Dickkopf-3(DKK-3),Dickkopf-1(DKKK-1)和胰岛素样生长因子结合蛋白3(IGFBP-3)。此外,通过抗体的应用或DKK-3,DKK-1和IGFBP-3的特定siRNA的应用进一步证实了HAMSC的抗肿瘤作用。在机械上,HAMSC衍生的DKK-3,DKK-1和IGFBP-3显着抑制了细胞增殖,并通过抑制Wnt/β-catenin信号通路和IGF-1R介导的PI3K/AKT信号通路,促进了HEPG2细胞的凋亡。综上所述,我们的研究表明,HAMSC在体内和体外具有显着的抗肿瘤作用,并且可能在临床上为HCC治疗提供了一种新颖的策略。
在广泛的疾病适应症中,从成人组织,大型外体扩张能力和明显的治疗效率中脱离的易于分离,使间充质干细胞(MSC)成为再生医学首选的干细胞。临床和动物研究表明,分泌的营养因素,而不是干细胞分化,可能介导了MSC的许多治疗效率。MSC治疗机制的这种范式转移已开始将MSC治疗从细胞基于生物学的治疗转化为基于生物学的治疗。我们的小组将外泌体(一种分泌的膜囊泡)识别为MSC分泌中的活跃治疗因素。外泌体被认为可以介导细胞与细胞通信。它带有大型且多样化的蛋白质货物,可以调节各种生化和细胞过程。这些包括增强糖酵解,不仅增加了细胞ATP的产生,还增加了用于合成代谢活性的糖酵解中间体,从而诱导腺苷介导的生存激酶的激活(例如ERK和AKT通过
抽象的消化性溃疡是全球最常见的胃肠道疾病之一,与诸如难治性发病率,出血,使用抗凝剂的干扰以及与长期使用质子泵抑制剂有关的挑战有关。消化性溃疡是胃或十二指肠粘膜的缺陷,从肌肉粘膜延伸到胃壁的更深层。在大多数情况下,溃疡会对标准治疗做出反应。然而,在某些人中,消化性溃疡在最初成功治疗后对常规治疗具有抵抗力。因此,包括使用干细胞在内的新的和安全的治疗对这些患者非常有利。脂肪衍生的间充质干细胞很容易大量可用,具有最小的侵入性干预,并且依次衍生的间充质基质干细胞(ASC)的分离可产生大量的干细胞,这对于细胞基和恢复性疗法至关重要。这些细胞具有很高的柔韧性,可以在体外区分几种类型的细胞。本文将研究在难治性的消化性溃疡患者中,拟源性组织衍生的间充质干细胞的作用和可能的机制和信号传导途径。关键字:难治性消化性溃疡,消化性溃疡,间充质干细胞,脂肪组织,细胞治疗
药理学方面的当前可用治疗方法包括抗血栓形成剂,抗血小板剂和降脂剂(10)。在大多数时间手术中都需要进行:冠状动脉成形术,并插入支架以使血液流动或植入机械心室辅助装置(11,12)。尽管如此,这些方法与高医疗费用和其他并发症(例如出血和感染)有关(11)。通过药理学和手术方法管理CVD的改善降低了CVD的死亡率,但它们仅作为症状治疗。然而,仍然不可避免地具有严重病毒性的CVD的进展(13)。cvds尤其是MI,由于心肌细胞的功能不可逆地丧失导致心力衰竭的功能(14),无法通过药理和手术方法保存。迄今为止,心脏移植仍然是心力衰竭的标准治疗方法,即CVD的末端。捐助者的稀缺性
单细胞测序(SCS)技术在间充质干细胞(MSC)研究领域起重要作用。本文全面描述了SCS技术在MSCS研究领域的应用,包括(1)SCS可以实现更精确的MSC表征和生物标志物的定义。(2)SC揭示了MSC中不同子截面之间普遍的基因表达异质性,这有助于对MSC的功能和多样性在发育,再生和病理环境中的多样性有助于更全面地理解。(3)SCS提供了有关MSC在分化过程中经历的动态转录变化以及重要信号通路和控制MSC中关键过程的调节因素的复杂网络的见解,包括增殖,分化和调节以及相互作用机制。(4)基于SCS数据的分析方法正在迅速发展和融合组织学研究领域,以系统地解构MSC的功能和机制。本综述为揭示生物学特性,异质性,分化潜力,生物学功能和MSC在单细胞水平上的临床潜力提供了新的观点。
引入骨骼的再生取决于各种因素,包括骨骼干/祖细胞(SSPC)及其与骨膜和骨髓小裂细胞中其他细胞种群的相互作用。裂缝会损害骨骼和周围的组织,导致出血,血肿形成以及hema-拓扑细胞流向骨折部位。这些事件导致SSPC和内皮细胞(EC)的扩展。我们实验室和其他小组的先前研究表明,骨膜是导致愈合的主要原因(1-3)。最近由Liu等人发表的遗传谱系追踪研究报道了支持骨膜作为骨折愈合的主要促进者。(4)。控制组织修复的关键事件是SSPC是否发生增殖或分化。在骨折愈合的早期阶段,自分泌和旁分泌信号将SSPC的命运直接降低对软骨和成骨谱系的承诺。然而,控制细胞异质愈伤组织中SSPC激活的分子途径和细胞对细胞信号传导机制仍然鲜为人知。Notch信号传导是一种保守的途径,在发育,稳态和组织再生中具有作用(5)。该途径在维持祖细胞池和控制各种细胞类型的成熟谱系中的分化中起着重要作用(6)。Notch信号传导的作用是分歧和温度控制的,取决于细胞谱系成熟的特定组织和阶段(5,7)。但是,Notch也Notch信号传导取决于Notch配体(JAGGED 1和2 [JAG1和-2]以及DELTA样配体1、3和4 [DLL1,-3和-4])与Notch受体(Notch1-4)(Notch1-4)(5,6)。在接收配体结合后,受体的构象变化促进了Notch受体细胞内结构域(NICD)的γ-分泌酶切割。然后,NICD与重组信号结合蛋白结合,用于免疫球蛋白κJ区(RBPJκ)和类似策划的蛋白,诱导基因转构。此信号序列通常称为典型的Notch信号传导。
1 法国图卢兹 31059 图卢兹大学医院 CARDIOMET 研究所心脏病学系;dr.anthonymatta@hotmail.com (AM);nader.e.vanessa@gmail.com (VN);lebrin.m@chu-toulouse.fr (ML);gross.f@chu-toulouse.fr (FG); galinier.m@chu-toulouse.fr (MG) 2 卡斯里克圣灵大学医学院,卡斯里克 446,黎巴嫩 3 卡斯特尔-马扎梅跨社区医院中心心脏病学系,81100 卡斯特尔,法国 4 黎巴嫩大学药学院,贝鲁特 6573/14,黎巴嫩 5 CIC-生物疗法,图卢兹大学医院,31059 图卢兹,法国 6 INSERM I2MC—UMR1297,31432 图卢兹,法国;anne-catherine.prats@inserm.fr (A.-CP);daniel.cussac@inserm.fr (DC) * 通信地址:roncalli.j@chu-toulouse.fr;电话:+33-56-132-3334;传真:+33-56-132-2246
简单摘要:在这项研究中,我们专注于从母牛的脂肪组织中获得间充质干细胞(MSC)并研究其特征和功能。我们从健康的母牛中收集了脂肪组织样品,并使用了特定方法来分离MSC。我们测试了细胞形成菌落,生长和分裂,在细胞表面表达干细胞标记,分化为骨和脂肪细胞的能力,并产生一种称为吲哚胺2,3-二氧酶(IDO)的物质,有助于调节免疫系统。结果表明,MSC从母牛的脂肪组织中成功分离出来,这些脂肪组织可以长期在培养中生长和扩展。MSC还分泌了大量的IDO,表明它们有可能调节免疫系统和控制炎症。这项研究对牛业具有重要意义,因为它表明自体(来自同一个人)源自脂肪组织的MSC可以用作对牛的各种疾病的补充治疗。与常规治疗相比,这些MSC可以通过解决与常见牛疾病相关的炎症和组织疤痕相比提供额外的好处。本研究中使用的方法可以由兽医疗法实验室采用,以准备MSC,以管理来自同一个人或其他捐助者的牛的疾病。