世界面临紧迫的需求,以减少碳排放并从化石燃料过渡。可再生能源源(例如太阳能)因其提供清洁,丰富和可持续性的能力而引起了极大的关注。太阳能电池,通常称为光伏电池,是利用太阳的力量并将其转化为电力的核心。这些细胞处于物理学,材料科学和至关重要的化学的交集。在其核心上,一个SO-LAR电池是一种旨在通过光伏效应吸收阳光并将其转化为电能的装置。太阳能电池中与化学相关的关键组件和过程包括:半导体材料是太阳能电池的核心。它们从阳光中吸收光子,形成电子孔对。了解这些材料的电子带结构和培养物对于优化它们的表现至关重要。一旦被阳光激发,必须将电子和孔通过材料有效地分离并有效地运输,以产生电流。这个过程在很大程度上依赖于半导体的化学和物理性质。表面处理,例如钝化层和反射涂层,用于改善半导体和周围环境之间的界面。这些涂层是通过化学过程制定的,以吸收光吸收并减少能量损失。inten-
•PV模块是太阳系最基本的设备。在讨论太阳能安装时,经常使用术语太阳能电池板,太阳能模块,PV,PV模块。PV细胞是通过光伏效应将太阳能转换为直流电流(DC)的半导体。细胞分组在一起形成PV模块。取决于太阳能安装的设计和尺寸,将PV模块链接在一起以形成PV数组。这些可以作为自由站结构安装,也可以在其他位置安装在屋顶上。•使用逆变器将PV模块的输出电压从DC转换为AC,以向AC负载供电。•安装断开开关以将PV模块与下游负载隔离开来,以保护人员和设备免受电气故障和常规维护期间的影响。•DC电缆用于将PV模块连接到逆变器,AC电缆将逆变器的输出连接到下游载荷。•支持结构用于保存并正确对齐PV模块。这些可以是独立的,也可以安装在屋顶上。一些结构还利用跟踪系统来通过全天遵循太阳来提供更高的效率。在天气事件的情况下,这些可以提供将PV模块定位为“存储”配置中的能力,以限制风或冰雹的损害。
灵活的光电探测器最近由于其广泛的应用,包括运动检测,光学通信,传感,生物医学成像和导弹警告,因此引起了更多关注。1,2这种灵活的光电探测器的最佳设计中的关键要求是功耗。高度希望开发没有外部功率输入的FSPD,这可以明显地提高适应性并降低柔性光电探测器的成本。3–8 SPD可以分为两类。9第一个是通过光伏效应构建的。10第二个设计的是集成的纳米系统,其中包括能量收集或存储单元以及光传感器。11,第一类无维护功能和简化结构在第二类中具有低成本优势。由于其独特的电气和光电特性,金属硫化剂半导体是光电设备的有趣选择。12硫化镉(CDS)是一种具有快速响应,低工作功能,高光敏性,较大的折射率和异常的化学和热稳定性的物理化学有趣的中间带直接带(2.4 eV)半核。因此,它是自助光电探测器的引人入胜且潜在的候选者。13–23,例如,Dai等人。 报道了由p-Si/n-CDS纳米线结构组成的FPSD,它们的响应超出了带镜头的限制,并在零时快速响应速度13–23,例如,Dai等人。报道了由p-Si/n-CDS纳米线结构组成的FPSD,它们的响应超出了带镜头的限制,并在零时快速响应速度
摘要在二维(2D)半导体制造过程中,侧向P-N连接的构建非常重要,而且具有挑战性。先前的研究表明,垂直P-N连接可以通过垂直堆叠2D材料来制备。但是,界面污染和较大面积的可扩展性是垂直堆叠技术难以克服的挑战。构建2D横向P-N同型结是解决这些问题的有效策略。在空间选择性p型掺杂2D半导体的掺杂有望构建侧面P-N均匀结构。在这项工作中,我们开发了一种低能离子植入系统,将植入能量降低至300 eV。低能植入可以形成浅植入深度,这更适合调节2D材料的电气和光学特性。因此,我们利用低能量离子植入将氮离子直接涂成几层WS 2,并成功实现了WS 2的精确调节,其电导率类型从N型转换为双极性甚至P型传导。此外,通过将其扩展到其他2D半导体(包括WSE 2,SNS 2和MOS 2)来证明该方法的普遍性。基于这种方法,横向WS 2 p-n同型被制造出来,具有显着的直径特征。还准备了基于P-N结的光电探测器,并准备了光伏效应,开路电压可以达到0.39V。这项工作为可控掺杂2D半导体提供了有效的方法。
1 Abhay Srivastava Unique Synergistic Molecular Recognition Induces Exclusive Cupric Ion-Specic Gel-to-Sol Transition in G-quadruplex Hydrogel 2 Aditi Saraswat Stabilizing ordered metal-vacancies in Dion-Jacobson type rare hybrid two-dimensional Bi(III)-iodide perovskites 3 Ajay Partap Singh Rana Thermal磁性Janus CR2X3S3(X = BR,I)单层4 Akshay V V V V V V增强了SB2SE3薄膜的性能5 AKSHITA SHARMA NA3V2(PO4)/C在对称细胞中的SHARMA NA3V2(PO4)/C在对称性细胞中6 Amarjith V Dep dev dep dep dep a dep offiations for s a amarjith V dep dep dep tem hyshys s s s a amarjith V dep dep dep tem hyshss,工程学7 Anagha Vinayan细胞破坏机制LPSCL中:锂插入锂的微观结构8 Anantha Sunil Maligi Maligi Bi2S3对BI2S3的制造通过Silar方法9 ANASHMITA GHOSHMITA GHOSHMITA GHOSHMITA CHOSH MITHAIMABLE BULK可切换散装光伏效应在本质上是固有的小铁的饲养饲养的饲养,为什么要三级酰胺?局部 - 由次级β酰胺诱导的诱导的胶原蛋白三重螺旋组件11 Arya K阻抗光谱揭示了葡萄糖检测的Nio-Modi eDEDES中的界面动力学12 B. N. Swetha swetha swetha增强了Aunps-
太阳能电池由半导体制成。具体来说,它们具有三层,即P型和N型半导体的组合。顶层薄,由硅制成,其中包含少量元素,例如磷,其电子比硅更大。这使顶层过量的电子自由移动并使材料更具导电性。因此,顶层是N型。薄的底层还用硅制成,其中含有少量电子的硼或耐芯的硅。这使底层更少,可以自由移动,从而使底层的电子导电较少。因此,底层称为p型。中间层比顶层和底层厚,并且电子的材料略少一些,使材料略有p型[8-17]。通常由银制成的薄金属线印在顶层的顶部,铝板与底层接触。可以在下图(2)中找到太阳能电池的示意图。我们都知道阳光具有不同的波长并发出不同的波浪。有些波对我们来说是可见的,而有些波则没有,因为波长太长了,无法看见,例如推断红光,而某些波长太短了,无法看到诸如紫外线。对于太阳能电池,仅具有350-1140nm波长的光被其吸收。这些还包括可见的灯。松动的电子移至顶部N型层,而“孔”呈正电荷原子向底部的P型层移动。当阳光撞击细胞时,中间层吸收它,而光波则将电子从硅原子中裂开,这使电子损失并留下正电荷区域也称为“孔”。这种效应称为“光伏效应”,如果阳光撞击了细胞,则过程继续。现在将电子和“孔”分开到每一层,以及电线连接到顶部和底层时,使电子流动使电流流动[33-36]。在这个项目中,可以选择太阳能电池板作为能源之一,因为阳光可以到达地球上的大多数地方,尤其是在亚洲地区。使其达到微型尺寸,使其像可穿戴设备一样使其成为可能。
Shruti Langhe 1,Prasanna Kandekar 2计算机系,Savitribai Phule University摘要:能源的需求日益增加,因此必须使用非规定的能源来源。太阳是非传统的能源来源。常规太阳能电池板将太阳能转换为电能。塑料太阳能电池是使用有机电子产品的光伏类型的类型,可通过光伏效应来吸收光吸收和电荷传输,从而从阳光下产生电力。聚合物在室温下提供了溶液处理的优势,这是较便宜的,并且可以使用塑料。因此,如果将硅用聚合物纳米线代替,那么太阳能电池将更轻,最终成本降低。这些太阳能电池很薄,直径几微米,并从太阳辐射中清除所有光线。塑料太阳能电池技术基于共轭聚合物和分子。聚合物太阳能电池引起了极大的兴趣,因为它提供了过去几十年来具有环保,柔性,轻巧,低成本,高效太阳能电池的可能性。塑料太阳能电池在使用方面更有效和可行。本文的重点是塑料太阳能电池技术的开发和优化,特别是对传统硅太阳能电池的柔性,轻巧且具有成本效益的替代来源的潜力。本研究工作的重点是找到最佳的有机材料,以提高塑料太阳能电池的效率和稳定性,从共轭聚合物到小有机分子不等。一些主要目标是通过最先进的制造技术(例如滚动打印和逐层沉积)来改善电荷传输机制并优化设备的体系结构。另一个关键方面是该项目评估塑料太阳能电池的环境方面和生命周期,以确保环保生产过程。在高功率转换效率下实现了巨大的初步结果,并且耐用性得到了极大的提高,从便携式电子设备到建筑集成的光伏电动机的范围很广。因此,塑料太阳能电池的发现可能是可再生能源解决方案并克服世界日益增加的能源挑战的主要步骤。关键词:塑料太阳能电池,有机光伏,聚合物太阳能电池,柔性太阳能电池,可再生能源,可再生能源,可持续能源,能源效率,低成本产生,电子传输层。
主管部门参考编号:林业、渔业和环境部参考编号 (DFFE):2023-02-0019 项目名称:北开普省 Emthanjeni 地方政府 Pixley Ka Seme 区市政当局 Britstown 附近的联盟号太阳能光伏集群 1-6 和相关基础设施的公众参与流程 项目描述:Red Rocket South Africa (Pty) Ltd 打算开发联盟号太阳能光伏集群 1-6(“该项目”),该项目由六 (6) 个光伏太阳能设施 (PVSEF) 组成。该项目的目的是利用可再生能源(即太阳辐射)以最小的环境影响产生清洁电力,为国家电网和/或任何私人承购商(如适用)做出贡献。该开发项目位于北开普省 Britstown 东南约 14 公里处。六 (6) 个 PVSEF 中的每一个都将属于不同的申请人。申请人名称及各自的发电容量如下: • 联盟 1 太阳能光伏园区(私人)有限公司 - 240MW • 联盟 2 太阳能光伏园区(私人)有限公司 - 300MW • 联盟 3 太阳能光伏园区(私人)有限公司 - 240MW • 联盟 4 太阳能光伏园区(私人)有限公司 - 300MW • 联盟 5 太阳能光伏园区(私人)有限公司 - 150MW • 联盟 6 太阳能光伏园区(私人)有限公司 - 240MW 拟建的 PVSEF 由大型太阳能电池板阵列组成,这些太阳能电池板由单个太阳能电池组成,这些太阳能电池通过光伏效应将阳光转化为电能。电池板设计基于双面太阳能光伏模块,安装在单轴跟踪器安装结构上,高度最高可达地面以上 6 米(m)。将安装电池储能系统 (BESS) 来优化 PVSEF 的能量输出并减少弃电。太阳能电池阵列产生的直流电 (DC) 将通过逆变器转换为交流电 (AC)。现场变电站将管理从太阳能电池板和电池储能系统到电网的电流。支持基础设施包括运营和维护 (O&M) 大楼、通道、围栏和保护设施的安全措施。
valleytronic,光学,热,磁性和铁电性能在新型异质结构和设备中。它们的弱层间耦合可以通过机械堆叠2D材料来相对简单地制造垂直侵蚀。另一方面,侧面异质结构(LHSS)的层次是现代金属 - 氧化物 - 氧化物 - 氧化导向器磁场晶体效应的基于微电极的基本结构,由于需要更多的复杂生长和兴奋剂技术,因此受到了探索的较少。受到可能从2D LHSS出现的潜在杰出性能和多功能调整自由的鼓励,在该领域进行了多项实验和理论研究。[1] The earliest experimentally realized 2D LHSs were those between graphene and hexagonal boron nitride (hBN) [2–6] grown by chemical vapor depo- sition (CVD), from which prototype field effect transistors (FETs) were demonstrated [2–5] Shortly later, a series of transition metal dichalcogenide (TMDC) mono layer (ML)通过一步或两步的CVD方法制备LHSS,包括MOS 2,MOSE 2,WS 2和WSE 2的组合。[7-12]所有这些TMDC LHSS都显示二极管样电流的整流效应。[26]同时,制造了具有高性能的原型设备,包括光电二极管和互补的金属 - 氧化物 - 半导体晶体管逆变器,[7,10–12]通过控制良好的气体流量切换技术或光刻辅助辅助阴离子的替代品,TMDC LHS的脱位量很清晰。 LHSS仅由一种材料组成,但具有不同的厚度,[16,17]或介电环境[18]在其界面上,产生了电子带隙,整流和光伏效应的修饰。将材料与不同空间对称性组合的2D LHS的其他形式,例如石墨烯-TMDC LHSS [19-22] HBN-TMDC LHSS,[19]石墨烯纳米替伯型LHSS与不同的兴奋剂[23]或宽度[23]或宽度[24] [24]单钙化剂 - 二甲基二苯二苯lhss [26]是通过各种增强的CVD方法创建的,例如机械 - 脱落的辅助CVD,[19]种子促进的CVD,[20]由等离子体蚀刻定义的模板生长,由等离子体蚀刻[21] [21] [21]和热层转化化学构图。
佩德罗·弗拉特利(Pedro Flatley)电气和计算机工程学院,美国佐治亚理工学院摘要:由于对气候变化和化石燃料的有限性质,近年来对可再生能源的需求在近年来的需求显着增长。这篇全面的审查论文旨在对可再生能源技术的进步进行深入分析。它探讨了各种可再生能源,包括太阳能,风,水力发电,生物质和地热,突出了其关键特征,当前状态和未来潜力。本文还研究了将可再生能源整合到现有能源系统中的挑战和机遇。此外,它讨论了储能技术和网格整合策略的最新研究和发展,以最大程度地利用可再生能源。通过综合和分析现有文献,本文为最先进的可再生能源技术提供了宝贵的见解及其对可持续和清洁能源未来的影响。1。简介全球能源需求不断增长,再加上减少温室气体排放的需求,促进了可再生能源技术的快速增长和发展。本节概述了可再生能源的重要性和审查论文的目标。1.1背景和意义,化石燃料对气候变化的影响以及这些资源的有限性质促使人们向可再生能源转移。评估每个可再生能源的当前状态,潜力和挑战。过渡到可再生能源对于缓解气候变化和实现可持续发展目标至关重要。1.2审查论文的目标本综合审查论文的主要目标是:分析可再生能源技术的进步,包括太阳能,风,水力发电,生物质和地热能。检查储能技术和网格整合策略的最新研究和发展。提供有关可再生能源进步对可持续和清洁能源未来的含义的见解。2。太阳能太阳能是最丰富,最容易获得的可再生能源之一。本节深入到光伏(PV)系统,浓缩太阳能(CSP)系统,太阳能电池板效率的进步以及太阳能集成到网格中。2.1光伏(PV)系统PV系统通过光伏效应将阳光直接转化为电能。本文讨论了各种类型的PV技术,例如晶体硅,薄膜和新兴技术,例如钙钛矿太阳能电池。它还强调了PV效率,材料和制造过程的最新进步。2.2浓缩太阳能(CSP)系统CSP系统利用镜子或镜头将阳光集中到接收器上,从而产生驱动涡轮机发电的热量。本节探讨了不同的CSP技术,包括抛物线槽,动力塔和风向旋转系统。它讨论了与其他能源的热量储能和杂交的进步。