二次谐波生成:半导体电介质接口的强大非破坏性表征技术 Irina Ionica a 、Dimitrios Damianos a 、Anne Kaminski-Cachopo a 、Danièle Blanc-Pélissier b 、Gerard Ghibaudo a 、Sorin Cristoloveanu a 、Lionel Bastard a 、Aude Bouchard a 、Xavier Mescot a、Martine Gri a、Ming Lei c、Brian Larzelere c 和 Guy Vitrant aa Univ。格勒诺布尔阿尔卑斯,CNRS,格勒诺布尔-INP,IMEP-LAHC,38000 格勒诺布尔,法国 b INL-UMR 5270,里昂国立应用科学学院,7 avenue Jean Capelle,69621 维勒班,法国 c FemtoMetrix,1850 East Saint Andrew Place,加利福尼亚州圣安娜 92705,美国。二次谐波产生 (SHG) 被证明是一种非常有前途的介电体-半导体界面表征技术,因为它灵敏、无损,可在晶圆处理的不同阶段直接应用于晶圆。该方法基于非线性光学效应,测量包含介电体-半导体界面处“静态”电场的信号,该信号与氧化物电荷 Q ox 和界面态密度 D it 直接相关。从 SHG 测量中提取 Q ox 和 D it 的一般方法需要 (i) 根据通过经典电学方法获得的参数进行校准和 (ii) 建模以捕捉影响 SHG 信号的光传播现象。在本文中,我们基于对如何利用 SHG 进行半导体电介质表征的最新进展的回顾来讨论这些问题。简介半导体上电介质堆栈在微纳电子、光伏 (1)、图像传感器 (2)、生物化学传感器等许多应用领域的设备中无处不在。在每种情况下,界面的电质量对设备的性能都有很大的影响。通常使用两个参数来确定这种界面的电质量:固定氧化物电荷密度 Q ox 和界面态密度 D it 。大多数时候,这些参数是通过电测量(例如电流、电容、噪声 (3))获取的,然后采用适当的提取方法并在专门制造的测试设备上实施(例如:金属氧化物半导体 - MOS 电容或晶体管)。一些其他方法可以直接在晶圆级实施,而无需任何额外的测试设备制造步骤,例如:半导体的电晕-开尔文特性 (4)、通过光电导或光致发光衰减测量进行的载流子寿命提取 (5)。除了无需任何额外步骤即可直接在晶圆上进行探测的可能性之外,选择最适合的测量方法的标准还包括灵敏度、非破坏性、区分 D it 和 Q ox 的能力、提供高空间分辨率的能力。可以满足所有这些标准的最新技术是二次谐波产生 (SHG) (6),基于非线性光学效应。
此外,偏振起着重要作用,因为它可以影响光束传播的深度。例如,众所周知,圆偏振光比线偏振光传播得更深 [3]。根据散射单元大小,偏振会保留光学记忆 [4]。拉盖尔-高斯 (LG) 光束 [5] 是一种涡旋光束,它可以携带不同类型的偏振(线性、圆形、径向和方位角)以及以ℓ 值的轨道角动量 (OAM) 为特征的相位前沿。具有空间不均匀偏振分布的光束称为矢量光束。各种空间模式(例如径向)具有不可分离的圆偏振和 OAM 部分。偏振和空间模式的结合导致了经典纠缠——Forbes 团队 [6] 使用经典纠缠矢量光束在湍流介质中实现更好的成像。矢量光束的关键特性(例如径向和方位角)结合了偏振和空间模式,它们是不可分离的且相互纠缠。这些特性不仅是量子纠缠所独有的,也适用于经典局部纠缠的矢量光束[6-9]。此外,矢量光束的不可分离特性不仅在光学成像中而且在光通信中都具有重要意义,因为人们正在探索其偏振自由度和空间模式来编码信息[7,10]。此外,根据理论[11],ℓ值越高,透射率越高,穿透能力越好,因此光密度(OD)越低,观察到的散射越少。当光脉冲进入组织等高度散射的介质时,它会分解成三个主要成分:弹道光束、蛇形光束和漫射光束。弹道分量保留了光的原始属性,因为它在前向方向上相干散射,而扩散分量则变得随机并在介质中游走。蛇形分量在前向方向上略微散射,传播路径更短并保留初始信息[12]。本研究重点研究了 LG 矢量涡旋光束在弹道(z < l tr)和扩散(z > l tr)区域通过小鼠脑组织的传输,其中 z 是混浊介质的厚度,l tr 是传输平均自由程[13]。研究了不同厚度小鼠脑组织不同特殊位置的不同类型偏振,以证明经典纠缠在经典极限下以更高光子通量潜在地改善成像方面的作用。大脑是一种由树状结构的神经元和轴突组成的生物组织。神经元由蛋白质聚合物的整合网络组织,这些聚合物被认为是一种手性介质。这种手性介质将通过改变其偏振状态与光的电磁场相互作用;这种效应使大脑成为手性生物等离子体[14]。结构化矢量光有望通过与电偶极子、磁偶极子和
此外,偏振起着重要作用,因为它可以影响光束传播的深度。例如,众所周知,圆偏振光比线偏振光传播得更深 [3]。根据散射单元大小,偏振会保留光学记忆 [4]。拉盖尔-高斯 (LG) 光束 [5] 是一种涡旋光束,它可以携带不同类型的偏振(线性、圆形、径向和方位角)以及以ℓ 值的轨道角动量 (OAM) 为特征的相位前沿。具有空间不均匀偏振分布的光束称为矢量光束。各种空间模式(例如径向)具有不可分离的圆偏振和 OAM 部分。偏振和空间模式的结合导致了经典纠缠——Forbes 团队 [6] 使用经典纠缠矢量光束在湍流介质中实现更好的成像。矢量光束的关键特性(例如径向和方位角)结合了偏振和空间模式,它们是不可分离的且相互纠缠。这些特性不仅是量子纠缠所独有的,也适用于经典局部纠缠的矢量光束[6-9]。此外,矢量光束的不可分离特性不仅在光学成像中而且在光通信中都具有重要意义,因为人们正在探索其偏振自由度和空间模式来编码信息[7,10]。此外,根据理论[11],ℓ值越高,透射率越高,穿透能力越好,因此光密度(OD)越低,观察到的散射越少。当光脉冲进入组织等高度散射的介质时,它会分解成三个主要成分:弹道光束、蛇形光束和漫射光束。弹道分量保留了光的原始属性,因为它在前向方向上相干散射,而扩散分量则变得随机并在介质中游走。蛇形分量在前向方向上略微散射,传播路径更短并保留初始信息[12]。本研究重点研究了 LG 矢量涡旋光束在弹道(z < l tr)和扩散(z > l tr)区域通过小鼠脑组织的传输,其中 z 是混浊介质的厚度,l tr 是传输平均自由程[13]。研究了不同厚度小鼠脑组织不同特殊位置的不同类型偏振,以证明经典纠缠在经典极限下以更高光子通量潜在地改善成像方面的作用。大脑是一种由树状结构的神经元和轴突组成的生物组织。神经元由蛋白质聚合物的整合网络组织,这些聚合物被认为是一种手性介质。这种手性介质将通过改变其偏振状态与光的电磁场相互作用;这种效应使大脑成为手性生物等离子体[14]。结构化矢量光有望通过与电偶极子、磁偶极子和
太初有光。光是美好的。此后不久,人们开始寻求对光的全面理解。虽然出版记录一开始有些零散,但公元前五世纪,希腊哲学家恩培多克勒得出结论,光由从眼睛发出的光线组成。欧几里得在其关于光传播的经典著作《光学》中,使用今天可能被称为局部现实主义的论证对这一观点提出了质疑。欧几里得假设光线是由外部光源发出的。但直到公元 1000 年伊本·海赛姆 (Ibn al-Haytham) 提出这一观点后,这一观点才被确立为科学依据。17 世纪的笛卡尔将光本身的特性描述为“压力”,它通过空间从光源传输到眼睛(探测器)。这个想法后来由惠更斯和胡克发展成为光的波动理论。大约在同一时间,伽森狄提出了相反的观点,即光是一种粒子,牛顿接受了这一观点并进一步发展了这一观点。杨氏 1803 年的双缝实验和菲涅尔的衍射实验普遍认为,光作为粒子和波的不同视角已经得到解决,有利于波动图像。在 19 世纪 60 年代,麦克斯韦方程以一种优雅而令人满意的方式进一步证实了这一结论:预测以光速传播的偏振电磁波。1897 年,J.J. Thomson 发现离散粒子携带负电荷在真空中移动,电磁学的波与流体观由此出现问题。随后在 1900 年,普朗克在“绝望之举”中援引了量化的电磁能量束来推导黑体辐射定律 [2, 3],这一步不仅包含了玻尔兹曼在统计力学中的先前猜想,而且与传统理解背道而驰。它最初被认为是推导的产物,后来得到纠正,但爱因斯坦在 1905 年对光电效应的描述 [4] 中更加认真地对待光量子理论。随后在 1913 年,玻尔援引了能量和角动量的量化来解释在氢-巴尔末系列中观察到的离散光谱发射线。1924 年,德布罗意基于这些想法假设不仅光,而且物质粒子也具有波状特性,这一假设彻底失败了。随后出现了量子光,这真是太棒了。随后,海森堡、玻恩、薛定谔、泡利和狄拉克等一系列发现和进步建立了量子力学的框架。就本书而言,1927 年,狄拉克将电磁场量化,有效地发展了光理论,涵盖了引发整个革命的物理现象。20 世纪 30 年代,首次在单光子水平上直接探测到光。20 世纪 50 年代原子级联光子对源 [5] 的出现及其在 20 世纪 70 年代和 80 年代的使用 [6–9] 使第一个单光子源问世。
wlvos@utwente.nl 简历 Willem Vos 于 1991 年凭借其论文“高压下简单系统的相行为”以最高荣誉 (cum laude) 获得阿姆斯特丹大学物理学博士学位。他曾获得美国卡内基科学研究所地球物理实验室的著名卡内基奖学金,在那里他发现了一类在极高压下的新型范德华化合物 (1992 年《自然》论文)。随后,他转而研究光子晶体和胶体物理。他的团队首创了非常受欢迎的“反蛋白石”光子晶体 (1998 年《科学》论文 [>2100x 引用])。自 2002 年起,Vos 担任特温特大学 MESA+ 纳米技术研究所复杂光子系统 (COPS) 教授。他的团队首次展示了使用 3D 光子晶体以及随后的 3D 光子带隙控制光的自发发射。 2005 年,他获得了荷兰科学基金会 NWO 的个人 VICI 资助。Vos 是 APS 和 OSA 的研究员,曾获得法国科学院斯内利厄斯奖章和笛卡尔-惠更斯奖。Vos 的论文平均被引用 45 次以上。他的学生已成为领先机构的教职员工,或在主要行业和非营利组织中谋求职业。摘要 - 应用纳米光子学?纳米光子学应用!纳米光子学领域已经产生了各种各样令人震惊的新科学概念和新应用。由于阿贝衍射极限,透镜和显微镜等传统光学元件无法将光聚焦到深亚波长纳米尺度。但是,人们可以通过使用纳米材料(如超材料、等离子体系统和光子晶体等)仔细操纵近场衰减波,将光压缩到纳米尺度。得益于光电子学和微电子学(我们的东京同事在 3D 带隙晶体中实现微型无阈值激光器方面取得了重大进展)、太阳能电池、光谱学和显微镜学,纳米光子学正在从生物化学到电气工程和数据通信等领域得到应用。在特温特大学的应用纳米光子学 (ANP) 集群中,一个由 80 名研究人员组成的团队研究了各种主题,例如用于存储光的光子晶体、量子保护网络安全、用于芯片行业的高级镜子、复杂介质和可编程片上网络中的量子光处理,以及用于集成光子学的极其精确的微型激光器。ANP 集群是荷兰最大的纳米光子学科学家聚集地。ANP 开创了新的研究领域“波前整形”,将光聚焦在不透明介质内部或外部,并设法透过不透明屏幕!ANP 在光传播的基本原理方面提供了新的见解,并探索了新兴应用(“纳米光子学应用!”),本着特温特大学创业精神。与工业界一起,知识的发展尤其体现在自由形式光散射、光伏、用于量子信息的光子集成电路以及用于水质监测等传感方面。在简要介绍 ANP 之后,我将报告一些最近的研究亮点,包括我们与 Iwamoto 教授和 Arakawa 教授团队的持续合作。
MST / Czarske Lab主席的亲爱的朋友和合作伙伴,测量和传感器系统(MST) / Czarske Lab的主席正在庆祝其成立19周年。我们回顾了一年。对我今年的活动报告是一种极大的荣幸和荣幸。获得了几个新项目。也正在进行一个国际项目。特别是LarsBüttner等人开发的激光轮廓传感器对速度和温度测量的商业成功。转移是与尤利希(Jülich)ILA R&D GMBH公司合作进行的。这项在市场上取得成功的创新获得了贝尔瑟德·莱宾创新奖。CZARSKE实验室的学生和员工今年获得了10多个奖项。总共获得了110多个荣誉,奖品和奖项,其中包括最近获得Katrin Philip 10,000欧元的Berta Benz奖。令人高兴的是,从校友(不来梅的安德烈亚斯·费舍尔)收到了ERC。2017年,日本皇帝在东京开设了国会大会ICO-24,德累斯顿被选为下届世界大会。经过3年的重密集式准备,在Optica,Spie,IEEE,EOS,DGAO,Zeiss,Tu Dresden,ICO,Owls和其他合作伙伴的支持下,由于不幸的是,国会无法举行国会。它被推迟了一年,然后在ICO大会关于数字格式的大会进行了深入的讨论后再次推迟。我们感谢所有支持者和工作人员,尤其是Nektarios Koukourakis和Lars Buettner。2022年,面对面的世界大会ICO-25-owls-16在国际意外的领域和质量中取得了巨大的成功。来自55个国家(非洲,美国,亚洲,澳大利亚,惊人的欧洲)的55个国家的与会者以及具有3个诺贝尔奖获得者的非凡质量密度使我们激动。此外,应分别感谢迈克尔·普菲弗(Michael Pfeffer)和沃尔夫冈·奥斯滕(Wolfgang Osten)对现场组织和科学计划的承诺。有关世界大会ICO-25-OWLS-16-DRESDEN-GERMANY-5-9- 9月2022年的信息,可以在https://wwwww.ico25.org的网站上找到以“光线为前进的社会”的主题。首先,我们只从光遗传学开始,然后与CRTD的遗传实验室进行非常成功的项目合作。今年发表了高质量论文,例如在生命科学联盟中,标题为“通过全息光遗传学跟踪人类干细胞衍生的神经元网络中的连通图”。用于多模纤维传输的新方法用于物理层安全性。使用现代波前塑形技术对纤维或组织中的散射过程的控制为应用的新方向开辟了新的方向。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。 也以第二代量子技术获得了项目。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。也以第二代量子技术获得了项目。人工智能,机器学习和深度学习正在扮演越来越重要的角色。深度神经网络可以通过无透镜纤维内窥镜来学习光传播,以分类人脑肿瘤。使用超薄内窥镜的恶性肿瘤和良性肿瘤的这种新分化方法有望实时进行晚期医学诊断。来自BMBF的重要资金是由Enowa I,Enowa II,Korona,Quiet,6glife,Gobio等项目实现的。我们喜欢强调国际网络,包括:中国廷华大学Liangcai Cao;奥地利Tu Graz的JakobWoisetschläger; WACLAW URBANCZYK,KINGA×OVENACZ,WROCLAW UNIV。科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。 此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;