磁性接近效应提供了一种有希望的方法,可以将欧洲一氧化碳(EUO)的低居里温度(T c)降低到室温,同时保持其化学计量和绝缘性能。这项工作使用静态和时间分辨的磁光kerr效应测量来研究EUO/CO Bilayers,并探讨了磁接近对T C和EUO的自旋动力学的影响。激发会导致EUO磁化的超快增强,然后在纳米秒内进行脱氧化。在放置在平面外磁场中的EUO/CO BiLayer中选择性激发CO时也可以看到这种行为,这归因于从CO进入EUO的SuperDi效率旋转电流的传播。由于CO的自旋动力学显示了瞬时热电器化,因此双层提供了一个系统,可以通过改变样品温度或泵液等外部参数(例如样品温度或泵)来调整瞬态磁光信号并符号。此外,在强烈的激发方案中,可以测量基础EUO的磁性磁滞,该磁性磁滞至今,该磁滞至今已呈现到室温到室温 - 提供了实验性证据,证明了CO和EUO之间存在可调的磁性接近性耦合。
人体是一个复杂的系统,不同器官之间的多样化和复杂的信号传导维持生理活性。作为信息获取的主要器官,眼睛不仅在视觉感知中起着至关重要的作用,而且正如越来越多的证据所表明的那样,在接收到非图像形成视觉的光信号时,通过复杂的电路对整个身体产生了广泛的影响。但是,光线通过眼睛对身体影响的程度和机制仍未得到充分探索。还缺乏全面的评论,阐明了光,眼睛和与整个身体的全身连接之间的复杂相互作用。在此,我们提出了轻眼体轴的概念,以系统地封装了视网膜收到的整个体内光信号的广泛非图像形成效应。我们回顾了轻轴轴的视觉神经结构基础,总结了眼睛调节整个身体的机制,以及在光 - 体轴上涉及的生理和病理过程中的当前研究状态和挑战。未来的研究应旨在扩大轻轴轴的影响,并探索其更深的机制。理解和研究轻轴轴将有助于改善照明条件,以优化健康并指导临床实践中的光疗标准。
然而,预计未来几年 MIR PIC 将大幅增长,这主要归功于气体检测、生物系统、安全和工业应用传感器的发展 [https://mirphab.eu]。MIR 中的 PIC 需要能够在 MIR 波长范围内工作的新设备,因此很可能基于新的材料平台。[8] 光电探测器就是这样一种设备,它将光信号转换为电信号,是片上光电转换中必不可少的组件。然而,它必须满足几个重要要求,例如与互补金属氧化物半导体 (CMOS) 技术的兼容性、在很宽的波长范围内工作以及无需冷却,这会增加系统的复杂性和成本。[6] 相比之下,大多数先前提出的 MIR 波长范围内的光电探测器要么制造成本高,要么不能在很宽的波长范围内工作,要么不切实际,因为它们需要冷却到低温。因此,对 MIR 光电探测器的搜索仍在进行中。解决方案可能是将热量转化为电能的热探测器。[10 – 14] 它们需要一种吸收材料,吸收光以产生热载流子,然后将其转化为电能。透明导电氧化物 (TCO) 属于近零 (ENZ) 材料,似乎是完成此类任务的绝佳材料,因为它们可以在很宽的范围内吸收能量
简要摘要:3、4、6 面“宙斯盾”系统。爱国者现拥有 GaN AESA;S/X 波段 AMDR 提供的灵敏度和轨道数量是 SPY-1D(V) 的 30 倍;低成本封装:使用 COTS、PCB ;极端 MMIC:片上 32 元件 60 GHz T/R 阵列;数字波束成形 (DBF):每个元件均采用 A/D 技术;材料:GaN 现在可以在相同占用空间内提供 5 倍到 10 倍 GaAs 的功率,成本降低 38%,MTBF 为 1 亿小时;MIMO(多输入多输出):有意义的地方;超材料天线:1000 美元的 20 GHz 和 30 GHz AESA;非常低成本的系统:汽车雷达成本不到 100 美元,未来只需几美元:MEMS:移相器;MEMS 压电材料 = piezoMEMS:用于飞行昆虫机器人;印刷电子:低成本 1.6 GHz(目标 2.4 GHz)印刷二极管;同一芯片上的电信号和光信号;硅中的红外透明;石墨烯和碳纳米管 (CNT):太赫兹晶体管时钟速度的潜力;革命性的 3-D 微加工;超导性;可生物降解的晶体管或 LED 阵列:嵌入用于检测癌症或低血糖;量子雷达:查看隐形目标;
摘要 — 量子通信功能的集成通常需要专用的光电元件,而这与电信系统的技术路线图并不相符。我们研究了商用相干收发器子系统在经典数据传输之后支持量子随机数生成的能力,并展示了如何将基于真空涨落的量子熵源转换为真正的随机数生成器。我们讨论了两种可能的实现方式,分别基于接收器和发射器中心架构。在第一种方案中,利用相干内差接收器中的平衡同差宽带检测来测量 90 度混合输入端的真空状态。在我们的原理验证演示中,在超过 11 GHz 的宽带宽上获得了 >2 dB 的光噪声和电噪声之间的间隙。在第二种方案中,我们提出并评估了重复使用偏振复用同相/正交调制器的监测光电二极管来实现相同目的。演示了 10 Gbaud 偏振复用正交相移键控数据传输的时间交错随机数生成。详细模型的可用性将允许计算可提取的熵,因此我们展示了两个原理验证实验的随机性提取,采用了双通用强提取器。索引术语 — 数字安全、多用途光子学、光通信设备、光信号检测、随机数生成
本研究的目的是介绍一种辅助诊断帕金森病 (PD) 的方法,即将功能性近红外光谱 (fNIRS) 研究分类为 PD 阳性或阴性。fNIRS 是一种非侵入性光信号模式,可传达大脑的血液动力学反应,特别是大脑皮层血氧变化;与其他神经成像模式相比,它是一种非侵入性且具有成本效益的方法,因此值得探索其作为辅助 PD 检测工具的潜力。除了将 fNIRS 与机器学习相结合之外,这项工作的贡献还在于实施和测试了各种方法,以找到实现最高性能的实现。所有实现都使用逻辑回归模型进行分类。从每个参与者的 fNIRS 研究中提取了一组 792 个时间和光谱特征。在两个表现最佳的实现中,使用了一组特征排序技术来选择精简的特征子集,然后使用遗传算法对其进行精简。为了实现最佳检测性能,我们的方法达到了 100% 的准确率、精确率和召回率,F1 得分和曲线下面积 (AUC) 为 1,使用了 14 个特征。这大大推进了 PD 诊断,凸显了将 fNIRS 和机器学习相结合用于非侵入性 PD 检测的潜力。关键词:帕金森病、功能性近红外光谱、机器学习、特征子集选择、遗传算法
作为集成电路接近其物理限制,神经形态计算已成为一种有希望的计算范式,但基于传统的von Neumann架构的计算,在人工智能,神经网络,脑部机器接口和其他领域中具有重要的应用前景。与电信号相比,光信号具有潜在的优势,例如高速,高带宽,对串扰的免疫力以及对环境变化的敏感性。利用神经生物学的研究成就,例如光遗传学,将光引入突触/神经元设备中,可以使光电子信号传感和转换能够显着改善神经形态设备的性能以及通过其集成形成的神经网络的性能。光电神经形态设备的开发将为集成感测,记忆和计算提供强有力的支持,这对于构建有效的新计算系统具有重要意义。近年来,光电神经形态设备的开发迅速发展,科学家和工程师在全球范围内在材料,结构,功能和集成方面的一系列研究进步。为了总结该领域的重要研究成就并展示了前瞻性工作,《半导体杂志》已专门计划了有关“光电神经塑态设备”的特刊。欢迎评论文章和研究论文的贡献。本期特刊的重点是但不限于以下主题:
ACP技术会议设有一套全体,教程,主题演讲,邀请,并由国际学术和工业研究人员进行的演讲,他们是各自领域的领导者。今年的会议将包含以下主题:光纤和基于光纤的设备;光传输子系统,系统和技术;网络体系结构,管理和应用程序;光电设备和集成;微波光子学和光信号处理;能量中的LED,光伏和光电子;光学传感器和生物探测器;微型,纳米和量子光子学:科学和应用。会议还将包括各种研讨会和行业论坛。,ACP凭借广泛的范围和最高技术质量的会议计划,提供了一个理想的场所,以跟上新的研究方向以及与领导这些进步的研究人员结识和互动的机会。 我们计划有800多篇论文,其中包括100多个被邀请,15个主题演讲和4个教程演讲,由许多来自学术界和行业的最杰出的研究人员作出。 我们感谢所有贡献者和作者使ACP成为真正独特,出色的全球活动。,ACP凭借广泛的范围和最高技术质量的会议计划,提供了一个理想的场所,以跟上新的研究方向以及与领导这些进步的研究人员结识和互动的机会。我们计划有800多篇论文,其中包括100多个被邀请,15个主题演讲和4个教程演讲,由许多来自学术界和行业的最杰出的研究人员作出。我们感谢所有贡献者和作者使ACP成为真正独特,出色的全球活动。
1。通信设备通过玻璃管发送光信号。2。计算机存储设备使用光学技术。3。高速公路收费站使用光学技术来扫描支付付款转会器并为车牌拍照。B.光是发射电磁(EM)辐射的一种能量形式。光速是一个科学常数。Light以每秒186,000英里的速度行驶。是自然能源刺激视力并使事物可见。光在波长范围内运行。EM光谱范围从无线电(最低能量/最长波长)到伽马射线(最高能量/最短波长)。1。光子是光的最小颗粒,是对光能的测量。在光子中测量了电磁体格上的任何波长的能量。2。白光是无色的,是以相同强度存在的所有可见光谱的所有不同波的结果。日光和灯泡会产生白光。3。光能和可见光不同。在物理学中,光可以指任何类型的电磁(EM)辐射波。对象的透射可能是透明的,但与此同时,它会阻止有害的紫外线穿过对象。例如,汽车挡风玻璃允许可见光通过,但是许多(如果不是全部)阻止有害的紫外线影响pasengers。例如:b。重要的是要考虑可用光的不同方式。传输光穿过几乎没有能量损失的物体。在光线击中不透明物体时停止时,存在吸收的光能。c。当光从物体弹起时,会存在反射的光能。d。折射光改变了由于光传递的物体而引起的光波的行为。e。衍射是光线通过物体的角或边缘的轻微弯曲。
本文介绍了获取、分析和处理光信号的可能性和方法,以便识别、确定和应对当代战场上的威胁。本文阐述了在电磁波谱的光波段进行电子战的主要方式,包括获取光发射器特征以及紫外线 (UV) 和热 (IR) 特征。本文讨论了描述激光辐射发射的物理参数和值,包括它们在创建光学特征方面的重要性。此外,已经证明,在将光信号转换为特征时,只能应用其光谱和时间参数。本文的实验部分证实了这一点,其中包括我们对三种双目激光测距仪的光谱和时间发射特性的测量。本文还表明,通过简单的配准和快速分析(涉及比较“日盲”波段紫外线特征的发射时间参数),可以快速、准确地识别各种事件。对于红外特征也是如此,需要比较几种波长的记录信号幅度。通过记录并分析训练场军事演习期间发生的几次事件的信号,实验证实了紫外线特征的正确性,这些事件包括火箭推进榴弹 (RPG) 发射和击中目标后的爆炸、三硝基甲苯 (TNT) 爆炸、穿甲弹、尾翼稳定脱壳穿甲弹 (APFSDS) 或高爆弹 (HE)。最后一部分描述了一个拟议的发射器模型数据库,该数据库是通过分析和将记录信号转换为光学特征而创建的。© 2020 中国兵器学会。由 Elsevier BV 代表科爱传播有限公司提供出版服务。本文为 CC BY-NC-ND 许可下的开放获取文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。