分子光谱、量子化学计算、生物物理化学、太阳能纳米材料化学:用于吸附的先进纳米材料、水污染物的光催化降解、生物医学应用有机金属化合物、用于将二氧化碳还原为增值产品的催化剂设计、无机化学清洁能源研究:用于光催化制氢和二氧化碳还原的纳米材料的合成、水污染物的光催化修复。有机合成(方法论)、不对称合成、光氧化还原催化、全合成、有机合成中的电化学材料化学、有机合成、天然产物化学环境化学、大气化学、微塑料、水研究、回收技术和废物管理、健康风险、环境工程。基于碳水化合物的荧光材料:爆炸物和重金属离子/阴离子检测;在光动力疗法和有机电子学中的应用(跨学科)天然产物化学、防腐抑制剂
摘要:当前的研究旨在在超声辐射下合成和表征丙烯甲酸甘油 - 格拉烯氧化钙(CAMOO 4 @GO)纳米复合材料。主要是,研究了紫外线下甲基蓝色(MB)的降解,以测量AS合成的凸轮4 @GO纳米复合材料的光催化特性。此外,还应用了各种石墨烯氧化物浓度,以研究其对钙钼钙的光学和光降解特性的影响。X射线衍射(XRD),扫描电子显微镜(SEM)和X射线(EDS)的光谱分散分析(EDS)用于表征Camoo 4 @GO纳米复合材料。drs的结果表明,GO显着影响了Camoo 4的光学特性,而Camoo 4 @GO纳米复合材料的带隙与Pure Camoo 4相比显示出红移。因此,光催化结果表明,添加GO的原因是将MB形式的光降解增加65%(Camoo 4)至89%(Camoo 4 @GO)。关键字:camoo 4 @go纳米复合材料,超声波法,光催化,红移
使用半导体材料从太阳能驱动的水生产氢是化石燃料的可持续替代品。这项研究的起源可以追溯到1972年,当时Fujishima和Honda报告了二氧化钛催化的光电化学氢产生。尽管有五十年的发展,但光催化材料在不同的方面已大大发展。然而,无论催化剂是有机的还是无机的,光催化氢产生的基础机制仍然尚不完全了解。广泛接受的物理模型提出,光产生电子 - 孔对,然后进行分离和转移。与有机光催化剂相对复杂,这与无机光催化剂相比,由于激子结合能高,并且有机半导体中电子 - 孔对或自由载体的迁移和运输不足。在这篇综述中,我们介绍了我们小组的有机光催化剂和先前报道的发现的最新研究。我们为有机半导体的未来光物理机制提供了范式,并讨论了挑战,我们认为这将为探索光催化氢生产的研究人员提供宝贵的见解。
摘要。ZnO 纳米粒子 (NPs) 用于光学、电子、传感、激光、光催化装置等。这些应用不仅依赖于形貌,还依赖于尺寸,可通过表面导向剂进行定制。在本研究中,我们研究了 4 个带有尿素/硫脲基团的三足配体(即 1、2、3 和 4)对表面改性 ZnO NPs(即 1Z、2Z、3Z 和 4Z)形貌的影响,这些配体分别在室温(30-40 C)碱性条件下合成。配体用于在室温下获得具有各种形貌的表面改性 ZnO。 1Z、2Z、3Z 和 4Z 分别观察到延伸的六边形纳米棒(* 2-3 微米长度和 * 400 纳米宽度)、层状(薄片自组装形成层状结构)、多分散盘状[微米级(2-3 微米)和纳米级(300-400 纳米)颗粒和纳米棒(1-1.5 微米长度和 130-165 纳米宽度)状形态。1Z 纳米棒具有尖端,而 4Z 纳米棒具有半圆形端部。已经通过罗丹明 B 染料降解评估了这些表面改性 ZnO NP 的光催化研究。
(VB) 移至导带 (CB),在 VB 中产生空穴 (h +)。Mg 和 S 掺杂剂产生窄带隙,使得在相似能量下更容易区分光诱导电荷载流子。因此,在相似能量下更容易分离光诱导电荷载流子 (Singaram et al., 2017)。Mg 和 S 离子既充当电子受体又充当供体,将成功抑制电荷复合并产生更具反应性的物种以促进 MB 降解。由于
1 药理学实验室,药学系,健康科学学院,塞萨洛尼基亚里士多德大学,塞萨洛尼基 54124,希腊 2 遗传学、发育和分子生物学系,生物学院,塞萨洛尼基亚里士多德大学,塞萨洛尼基 54124,希腊 3 物理化学实验室,化学系,塞萨洛尼基亚里士多德大学,塞萨洛尼基 54124,希腊 4 希腊研究和技术中心,应用生物科学研究所,塞米 57001,希腊 5 普通微生物学实验室,遗传学、发育和分子生物学系,生物学院,塞萨洛尼基亚里士多德大学,塞萨洛尼基 54124,希腊 6 STERIMED SA,G' Fassi,建筑街区 52b,Sindos 工业区,57022希腊塞萨洛尼基 * 通信地址:sklaviad@pharm.auth.gr † 这些作者对这项工作做出了同等贡献。
1引言具有分层结构的二维材料,例如石墨烯和过渡金属二分法元素正在发展的技术,并且在计算和电路制造工业中的数字应用1-3。在具有修改功能特性的半导体中将这些材料从笨重到单层的限制。单层材料对研究人员来说是有吸引力的候选人。诸如MOS 2和WS 2之类的大量材料具有间接的带结构,而其单层是直接的,宽4-7。通过应变工程,结构和电气行为可以调整。电子迁移率和有效质量是电子设备的关键工具。散装或2D材料的外观外观在实验中产生很多菌株。这些发现表明了新的物理和化学能力包括电气,光学和磁性8。第一原理计算揭示了大小,形状和声子之间的联系
同行评审期刊中的出版物:(总论文是1073,h-index为18,而i10-Index是22))in 08-12-202343。绿色合成的COFE 2 O 4纳米颗粒,用于使用可见光暴露R. Kavitha,K。KrishnaVeni,S。Agalya,Suresh Sagadevan,L.C。评估光催化研究。Nehru Ceramics International(审查)(影响因素5.2)42。增强了壳聚糖的光催化和超声催化性降解3纳米复合材料,用于对新兴污染物的环境修复K. Krishna veni,R。Kavitha的环境修复,是Fatimah,是Fatimah,Suresh Sagadevan,L。C. Nehru nehru Inhru inhru Intheric Intaric Chemensigation Communications 158(3.8)158(2023)。氧化铜和氧化镍纳米颗粒对抗菌活性的废水回收和评估S. agalya,K。KrishnaVeni,R。Kavitha,Suresh Sagadevan,L.C。nehru无机化学通信(审查)40。综合和制造HAP从鱼秤废物中形成骨骼等效的P. Venkatraman,Rajisha Rajan,C.S。Sureka,L.C。 Nehru核和粒子物理学会议论文集336-338(2023)54-61(影响因子0.42)39。 壳聚糖/锡氧化物纳米复合材料的有效光催化活性用于环境修复Sureka,L.C。Nehru核和粒子物理学会议论文集336-338(2023)54-61(影响因子0.42)39。壳聚糖/锡氧化物纳米复合材料的有效光催化活性用于环境修复