我们介绍了新的基于奎诺林的共价三嗪框架(quin-ctf)的设计和合成,该框架将两个光活性片段结合在其结构(三嗪和喹啉部分)之内。通过将这种CTF材料与氟二氧化钛(F-TIO 2)杂交,我们准备并表征了具有增强性能的光催化剂,从而利用了两个成分之间的协同作用,以使水中的污染物光降解在水中。该F-Tio₂@CTF杂交系统被评估用于甲基蓝色染料的光催化降解和药物化合物,例如环丙沙星作为模型水污染物。含有少量CTF(0.5、1和2 wt。%)的杂种材料达到了显着的光降解效率,其表现明显优于其单个对应物。使用F-TIO 2催化的此类过程中涉及的反应性氧化剂(ROS)与使用原始Quin-CTF或其混合材料时所涉及的反应性氧化物种不同。此外,杂种材料表现出可重复使用性,可在多个周期内保留高光催化活性。因此,这项工作强调了一种有希望的策略,即通过将少量基于CTF的系统(例如二氧化钛)纳入少量基于CTF的系统来设计具有成本效益且环保的光催化系统,从而提供了可持续且有效的解决方案,以缓解水污染。
摘要。纳米结构和量子点对增强光伏能量转化效率具有重大影响,这在这项综合研究中证明了这一点。纳米结构和纳米化颗粒的材料通常用于解决与能量转化有关的紧急问题。使用纳米结构物质来解决能源和自然资源的问题,最近引起了很多兴趣。方向性纳米结构特别显示了能量转换,收集和存储的希望。由于其独特的特性,例如电导率,机械能和光致发光,由碳(CQD)制成的量子点和石墨烯量子点(GQDS)已集成到混合光伏电动机 - 心电图 - 心电图系统(PV-TE)中。它评估了纳米结构对太阳能技术的影响,特别是它们如何改善太阳能电池中的功率转化和光吸收。光学探测器将光子能量转化为电信的信号,是CQD引起注意的许多光电使用,因为它们是当代成像和通信系统的重要组成部分,例如可见光照明摄像头,机器视觉,机器视觉,X射线X射线和近交易的图像处理以及可见光的光检测设备。除了超级电容器外,该研究还研究了纳米结构如何通过作为氢合成和超级电容器的光催化剂来促进可持续解决全球能源危机的关键作用。
超级细菌是对大多数抗生素产生耐药性的细菌,严重威胁着人类的健康。银 (Ag) 纳米粒子具有广谱抗菌特性,但对超级细菌仍具有挑战性。在这里,使用基于卟啉的连接体组装银簇并生成一种新颖的框架结构 (Ag 9 -AgTPyP),其中九核 Ag 9 簇由以银为中心的卟啉单元 (AgTPyP) 在二维上均匀分隔,显示出开放的渗透孔隙率。Ag 9 -AgTPyP 在可见光照射后 2 小时内可消灭超过 99.99999% 和 99.999% 的耐甲氧西林金黄色葡萄球菌 (MRSA) 和铜绿假单胞菌 (P. aeruginosa),优于大多数细菌灭活光催化剂。新建立的从 AgTPyP 到相邻的对 O 2 具有优先亲和性的 Ag 9 簇的长期电荷转移状态极大地促进了活性氧 (ROS) 的产生效率;其独特的框架加速了 ROS 的运输。包含 Ag 9 -AgTPyP 薄膜的个人防护设备(口罩和防护服)也表现出对超级细菌的出色性能。这种超级细菌杀灭效率在银配合物和卟啉衍生物中是前所未有的。利用金属簇和连接体之间的高效光生电子和空穴可以开辟光催化领域新的研究兴趣。
这项工作表明了通过将铁电batio 3(BTO)整合为底层,半导体MOO 3作为中间层和等离激元银纳米颗粒(Ag nps)作为顶层,将有效的三元异质结构光催化剂制造为底层,半导体MOO 3。Batio 3 /Moo 3 /ag(BMA)异质结构在紫外线batio 3 /ag(BA(BA)和MAO时,在UV -Visible Light Plintination下,若丹明B(RHB)染料的光降解和光催化效率为100%,在60分钟下显示为60分钟。BMA异质结构中的光催化活性增加归因于其增强的界面电场,这是由于BTO -MOO 3和MOO 3 -ag界面的电动双层形成。对BMA异质结构观察到的表面等离子体共振(SPR)峰的较高蓝光清楚地表明,在光照明下,电子向顶部AG NPS层的转移增加了。较高的电阻开关(RS)比,电压最小值的差异增加以及改善的光电流产生,从I – V特性中可以明显看出,这说明了BMA异质结构中增强的电荷载体的产生和分离。在BMA异质结构的Nyquist图中观察到的较小的弧形半径清楚地展示了其增加的界面电荷转移(CT)。还研究了BMA异质结构的CT机制和可重复使用性。
光催化水分裂已成为氢生产的可持续途径,利用阳光来驱动化学反应。本综述探讨了DENSITY功能理论(DFT)与机器学习(ML)的整合,以加速光催化剂的发现,优化和设计。DFT提供了对电子结构和反应机制的量子力学见解,而ML算法可以对材料特性,催化性能的预测和逆设计进行高通量分析。本文大约在二元光催化系统中取得进步,突出了Tio 2,Bivo 4和G-C 3 N 4等材料,以及新型的异质关节和共同催化剂,以改善光吸收和电荷分离E FFI的效率。关键突破包括在实验和计算数据集中训练的ML架构,例如随机森林,支持矢量回归和神经网络,以优化带隙,表面反应和氢的演化速率。诸如量子机学习(QML)和生成模型(GAN,VAE)等新兴技术展示了探索假设材料并提高计算效率的潜力。该评论还突出了高级光源,例如可调LED和太阳模拟器,以实验光催化系统的实验验证。挑战与数据标准化,可伸缩性和可解释性有关,提出了协作框架工作和开放访问存储库,以使DFT-AI工具民主化。通过桥接实验和计算方法,这种协同方法的变化潜力可实现可扩展的,成本的氢生产,为可持续能源解决方案铺平了道路。
在过去的十年中,用于小分子激活的抽象光催化已经取得了显着进步,但由于光子衰减效应,其扩大量仍然是一个挑战。有希望的解决方案在于利用与连续流动反应堆技术配对的高光子强度。但是,对光子传输的深度掌握至关重要,通常需要资源密集型实验。为了解决这个问题,我们引入了一种创新的方法来用于光化学反应器设置表征,从辐射光源分析开始,然后发展为3D反应器模拟以进行光子通量测定。与确定完整光子吸收优先级的常规技术相反,当反应混合物不饱和时,我们的技术最佳地运行。该策略将光子通量和路径长度确定分解,从而大大减少了实验过程。工作流程在各种反应堆系统中都证明了多功能,将复杂的光相互作用简化为一个单维参数,即有效的光路长度。与光子通量结合在一起,该参数有效地表征了光化学设置,无论尺度,几何,光强度或光催化剂浓度如何。采用辐射测定法进一步提供了对光源定位和反应堆设计的见解,并消除了由于光源降解而导致的重复化学启动测量测量的需求。此外,提出的工作流程促进了较低浓度的实验,从而确保了最佳的反应器操作。本质上,我们的方法为反应堆照射表征提供了一个彻底,有效且一致的框架。
datta,Prithwish Dastidar,Arkadip Majumder,Maharghya Dyuti Das,Pratikrit Manna,Subhasis Roy,Polymer Engineering ISSN:2191-0340(接受)(接受)。(如果1.624)。(6)对可再生能源对可持续发展的环境影响的综述,Debabrata Gayen Rusha Chatterjee,Subhasis Roy,国际环境科学与技术杂志,https://doi.org/10.1007/s13762-023762-023-023-05380-Z。(如果3.519)(7)HPMC介导的ZnCl 2可能将Pb 2+掺杂代替环境友好的卤化物钙钛矿太阳能细胞制造“ Shyamal Datta,Mouli Mitra,Subhasis Roy,ECS ECS,固态科学与技术杂志,2023年,2023年,第2023卷,第2023卷,12,第10期,第1页。 10500510。(如果2.070)。(8) Synthesis, characterization, and density functional theory calculation studies of a novel Rb-based lead halide perovskite material, Swastik Paul, Shibsankar Mondal, Souhardya Bera, Ankit Saha, Ridipt Mishra, Arkadip Majumder, Milan Kumar Mandal, Subhasis Roy , Chemistry of Inorganic Materials, Elsevier.2023,第1卷,100015,(9)开发2D纳米材料的路线图,以准备有效的光催化剂,Spisismita Mondal,Souhardya Bera,Subhardya Bera,Subhasis Roy,Samiconductotor Processing in Amiciconductor处理的材料科学,第168、2023、2023、107834(IF 4.62)。(10) Morphological tuning and defect-free lead halide perovskite by surface passivation for solar cell fabrication, Shyamal Datta, Mouli Mitra, Subhasis Roy , Ionics, Spinger, volume 29, pages, 4397–4405 , 2023, DOI 10.1007/s11581-023-05116-6 (IF 2.39 ).(11)水和废水处理作者的光催化作者:Preetam Datta,Subhasis Roy,催化研究2023; 3(3):020; doi:10.21926/cr.2303020。(12)用于大规模的含有有机和重金属离子的废物污水的一声协同处理,Yang ding,Soumyajit Maitra,Chunhua Wang,Runtian Zheng Zheng,Tarek Barakat,Tarek Barakat,Tarek barakat,Subhasis Roy seconcadic,liian lie-liian liian lie-liian seconciplian liian cecraciping clacion,(12)含有有机和重金属离子的废物污水的大规模协同处理的双功率光催化剂第179–192页(2023)(如果8.273)(13)对第三代光伏技术的全面综述,Arko de,Jyoti Bhattacharjee,Sahana R. Chowdhury和Subhasis Roy,化学工程研究杂志,杂志 (14)Bhattacharjee J,Roy S.使用可变的材料方法来应对气候变化。 垫子。 SCI。 res。 印度; 20(3).2023,ISSN:0973-3469。 http://dx.doi.org/10.13005/msri/200301 2022(15)在可见光光照射下,使用Cu掺杂的1d-Bi2s3/rgo纳米复合材料选择性将二氧化碳的照片还原为甲醇。 Arindam Mandal,Soumyajit Maitra,Subhasis Roy,Baisakhi Hazra,Koustuv Ray和Kajari Kargupta,New J. Chem。 , 2022 (IF 3.6 ) (16) Synthesis and characterization of Inorganic Nanoparticles Luminophores for Environmental Remediation, Abdul Aziz Shaikh, Souhardya Bera, Swastik Paul, Shibsankar Mondal, Ankit Saha and Subhasis Roy , 4open Special issue Inorganic Nanoparticle Luminophore: Design and Application, 4open 5(19) pp 7,2022(https://doi.org/10.1051/fopen/2022021)的数量。(12)含有有机和重金属离子的废物污水的大规模协同处理的双功率光催化剂第179–192页(2023)(如果8.273)(13)对第三代光伏技术的全面综述,Arko de,Jyoti Bhattacharjee,Sahana R. Chowdhury和Subhasis Roy,化学工程研究杂志,杂志(14)Bhattacharjee J,Roy S.使用可变的材料方法来应对气候变化。垫子。SCI。 res。 印度; 20(3).2023,ISSN:0973-3469。 http://dx.doi.org/10.13005/msri/200301 2022(15)在可见光光照射下,使用Cu掺杂的1d-Bi2s3/rgo纳米复合材料选择性将二氧化碳的照片还原为甲醇。 Arindam Mandal,Soumyajit Maitra,Subhasis Roy,Baisakhi Hazra,Koustuv Ray和Kajari Kargupta,New J. Chem。 , 2022 (IF 3.6 ) (16) Synthesis and characterization of Inorganic Nanoparticles Luminophores for Environmental Remediation, Abdul Aziz Shaikh, Souhardya Bera, Swastik Paul, Shibsankar Mondal, Ankit Saha and Subhasis Roy , 4open Special issue Inorganic Nanoparticle Luminophore: Design and Application, 4open 5(19) pp 7,2022(https://doi.org/10.1051/fopen/2022021)的数量。SCI。res。印度; 20(3).2023,ISSN:0973-3469。 http://dx.doi.org/10.13005/msri/200301 2022(15)在可见光光照射下,使用Cu掺杂的1d-Bi2s3/rgo纳米复合材料选择性将二氧化碳的照片还原为甲醇。Arindam Mandal,Soumyajit Maitra,Subhasis Roy,Baisakhi Hazra,Koustuv Ray和Kajari Kargupta,New J. Chem。, 2022 (IF 3.6 ) (16) Synthesis and characterization of Inorganic Nanoparticles Luminophores for Environmental Remediation, Abdul Aziz Shaikh, Souhardya Bera, Swastik Paul, Shibsankar Mondal, Ankit Saha and Subhasis Roy , 4open Special issue Inorganic Nanoparticle Luminophore: Design and Application, 4open 5(19) pp 7,2022(https://doi.org/10.1051/fopen/2022021)的数量。
镍铁氧体/(n,s)氧化石墨烯(NF/(n,s)GO)通过使用Ni 2+和Fe 3+混合物(n,s)GO养老金中的Ni 2+和Fe 3+混合物合成。该材料用作水生B(Rhb)降解作为水生环境中的染料模型的光催化剂。发现Nife 2 O 4纳米颗粒的粒径为11.5 nm,高度分散在(N,S)GO矩阵上,该矩阵是由石墨和硫库制备的。可见光诱导的RHB在NF/(N,S)GO上的光降解已被研究,其中Nf/(n,s)GO与镍铁氧体和(N,S)GO相比,NF/(N,S)对RHB具有高光降解活性。此外,在RHB光降解的三个周期之后,该催化剂没有显示出明显的活性损失(与新鲜催化剂相比,降解效率下降约为15%),证实了其稳定性。化学氧的需求(COD)测量表明,在光降低240分钟后,COD从初始时间的49.4 mg.l -1逐渐减少到4.8 mg.l -1,表明降解过程的矿化程度很高。此外,动力学和自由基的清道夫研究表明,超氧化离子(·O 2 - ),羟基离子(·OH)是主要的光氧化剂,其次是孔(H +)和电子(E-)。还解决了RHB对NF/(N,S)GO的降解机制。这项研究通过利用可见光来源为水溶液中的有机污染物提供了一种可能的治疗方法。
4. Pratik Pataniya、Chetan K. Zankat、MohitTannarana、CK Sumesh、Som Narayan、GK Solanki、KD Patel、VM Pathak、Prafulla K. Jha “由 WSe2 纳米点功能化的纸基柔性光电探测器” ACS Appl. Nano Mater.2,5, 2758-2766 (2019)。5. Abhishek Patel、Pratik Pataniya、GK Solanki、CK Sumesh、KD Patel、VM Pathak “n-VO 2 /n-MoSe 2 异质结二极管的制造、光响应和温度依赖性” Superlattices and Microstructures 130, 160-167 (2019)。 6. CK Sumesh “MX 2(M = Mo,W;X = S,Se)/Si异质结器件的温度相关电子电荷传输特性”材料科学杂志:电子材料;30,4117–4127(2019 年)。7. CK Sumesh “纳米结构太阳能电池中的高效光子管理:2D 层状过渡金属二硫属化物半导体的作用”太阳能材料和太阳能电池 192 16–23(2019 年)。8. CK Sumesh 和 Kinnari Parekh “纳米催化物理化学吸附和有机染料降解”Pramana – 物理学杂志(2019 年)92:87 DOI:10.1007/s12043-019-1760-0(2019 年)。 9. SanniKapatel、CK Sumesh,“两步简便制备 MoS2·ZnO 纳米复合材料作为亚甲蓝(染料)降解的有效光催化剂”15,119–132 (2019)。10. Pratik Pataniya、GK Solanki、Chetan K. Zankat、MohitTannarana、CK Sumesh、KD Patel、VM Pathak,“n-
石墨烯是一种二维的基于碳的光催化剂,显示出很大的希望。这项研究使用氧化石墨烯(GO)与传统的水处理程序,例如离子交换和吸附进行了比较新有机染料甲基蓝(MB)的光催化降解。在这项研究中,通过在水溶液中的光降解甲基蓝(MB)评估了GO和过氧化氢(H 2 O 2)的光催化活性。使用X射线粉末衍射(XRD),扫描电子显微镜(SEM),能量色散光谱(EDX)和傅立叶变换红外射线光谱(FTIR)检查所得的GO纳米颗粒。XRD数据验证了以2θ≈10.44°为中心的强峰,对应于GO的(002)反射。我们的研究发现,纳米颗粒和H 2 O 2在自然阳光照射下在60分钟内的pH〜7时,H 2 O 2的h 2 O 2达到了〜92%的照片脱色。此外,还研究了溶解氧(DOC)和H 2 O 2对MB降解的影响。实验结果表明,氧是增强光催化降解的决定性因素。直接光催化(MB/GO)和H 2 O 2辅助光催化(MB/H 2 O 2/GO)导致DOC 3.5 mgl -1的降解速率常数(K1)从0.019增加到0.019升至0.019升至0.042 min -1。在这种情况下,H 2 O 2充当电子和羟基自由基(•OH)清除剂;但是,添加H 2 O 2应达到正确的剂量,以增加MB分解。将初始DOC含量从2.8增加到3.9 mgl -1导致降解速率常数(K1)从0.035增加到0.062 min -1。对直接和H 2 O 2辅助光催化的光降解机理和动力学进行了研究。