共轭聚合物是光催化氢进化的有前途的材料。但是,大多数报道的材料不可溶解材料,从而限制了它们用于大规模应用的潜力,例如作为解决方案铸造膜。通常引入柔性侧链以提供溶解度,但是这些通常具有不利的特性,例如疏水性,从而降低了光催化活性。在这里,采用计算预测来帮助设计氯仿可溶性聚合物光催化剂,这些光催化剂通过有利的分子内相互作用显示了平稳性的增加。使用这种方法,将三个共轭聚合物光催化剂与相同的聚(苯 - 二苯并[b,d]硫苯磺酸硫酮)骨架,但在苯二烯环上的溶解侧链不同,探索了(即乙烯糖基乙烯糖),n -decyl,n-dody,n-ded。这些侧链变化显着改变了聚合物的特性,特定的能级,光学间隙和润湿性。在悬浮液中,疏水N-氧化官能化聚合物的牺牲氢进化速率为17.0μmolH -1,而亲水性TRI(乙二醇)功能化聚合物的活性几乎增加了三倍(45.4μh -h -1)。相反,由于侧链引起的骨架扭转,纯烷基侧链(N-二烷基)纯烷基侧链(N-二烷基)未观察到氢的演化。在可见光光照射下,最活跃的聚合物的薄膜表现出有希望的面积归一化的牺牲氢进化速率,为7.4±0.3 mmol H-1 m-2。
a 印度 Shoolini 大学先进化学科学学院,索兰,喜马偕尔邦 173229 b 越南同奈洛宏大学先进能源与环境应用材料重点实验室 c 印度理工学院曼迪分校基础科学学院和先进材料研究中心,卡曼德,曼迪 175075,喜马偕尔邦,印度 d 沙特阿拉伯吉达国王阿卜杜勒阿齐兹大学先进材料研究卓越中心,邮政信箱 80203,吉达 21589 e 沙特阿拉伯吉达国王阿卜杜勒阿齐兹大学理学院化学系,邮政信箱 80203,吉达,沙特阿拉伯 f 艾克斯-马赛大学、CNRS、IRD、INRA、Coll France、CEREGE,艾克斯-普罗旺斯 13100,法国 g 西安交通大学国际可再生能源研究中心、动力工程多相流国家重点实验室中国陕西科技大学环境科学与工程学院,西安 710021,中国维新大学研究与发展研究所,岘港 550000,越南维新大学环境与化学工程学院,岘港 550000,越南
在后一种情况下。这些能量分散机制不仅对催化的量子效率具有深远的影响 - 显然对储能应用至关重要,而且对反应的催化转换率也具有最重要的意义。6给定光催化剂 - 猝灭剂组合的淬火和松弛之间的分馏用于光催化反应发育中的机械询问,以识别或确认哪些分子物种与兴奋的光催化剂相关。一种常见的技术是发光淬火(船尾– Volmer)分析,该分析测量了给定淬火物种的PC*淬火率,这是其浓度与辐射衰减过程竞争的函数。7实际上,该技术已经发现了提供机械洞察力的应用,并且最近已将其作为一种高通量筛选技术,用于发现新型的合成有机转化。8,9
使用半导体材料从太阳能驱动的水生产氢是化石燃料的可持续替代品。这项研究的起源可以追溯到1972年,当时Fujishima和Honda报告了二氧化钛催化的光电化学氢产生。尽管有五十年的发展,但光催化材料在不同的方面已大大发展。然而,无论催化剂是有机的还是无机的,光催化氢产生的基础机制仍然尚不完全了解。广泛接受的物理模型提出,光产生电子 - 孔对,然后进行分离和转移。与有机光催化剂相对复杂,这与无机光催化剂相比,由于激子结合能高,并且有机半导体中电子 - 孔对或自由载体的迁移和运输不足。在这篇综述中,我们介绍了我们小组的有机光催化剂和先前报道的发现的最新研究。我们为有机半导体的未来光物理机制提供了范式,并讨论了挑战,我们认为这将为探索光催化氢生产的研究人员提供宝贵的见解。
乙酸和酮衍生物。[1] 这些化学品作为制造香水、染料和药物的重要分子构件和中间体具有广泛的应用。由于 C C 键能相对较高(90 kcal mol - 1 ),C C 键断裂在热力学上不利,传统的 C C 键断裂过程大多是由能量和成本密集型系统驱动的热催化反应,严重依赖有毒/昂贵的氧化剂、贵金属催化剂,并且通常需要恶劣的条件。[2] 因此,在温和条件下进行选择性 C C 键断裂作为升级生物质衍生多元醇的有效工具而备受追捧。甘油是一种用途广泛的多元醇,也是生物柴油生产中的重要副产品,生物柴油产量巨大,导致大量过剩产品以极低的价格(0.11 美元/公斤)涌入市场。[3] 因此,甘油被视为生物废弃物,也是生产高价值化学品的十大生物质衍生平台分子之一(美国能源部列出)。[4] 在适当条件下,甘油可以选择性地氧化或还原成精细化学品,如丙烯醛、[5] 二羟基丙酮、[6] 乳酸、[7] 丙烯酸、[8] 1,2-丙二醇、[9] 或 1,3-丙二醇。[10] 鉴于这种潜力,人们投入了大量精力来探索一种有效的催化剂,以实现高转化率和对目标产品的高选择性。金/碳催化剂是早期的例子之一,它只有在 NaOH 存在下才有效。因此,氧化产物通常是钠盐,这使得后净化过程非常困难。[11] 此后,人们致力于寻找不使用 NaOH 的替代催化剂。最近有报道称,Mn 2 O 3 可以在 140 °C 和 1 MPa O 2 下将甘油转化为乙醇酸,选择性为 52.6%。[12] 然而,开发高效、高选择性催化剂将甘油转化为特定产品仍然是一项重大挑战。因此,选择性甘油 CC 裂解不仅具有重要的科学意义,而且考虑到相关产品的高价格(例如,每公斤乙醇醛 9 美元,比反应物甘油贵 80 倍),也具有经济意义。光催化已被公认为在非常温和的条件下进行 C C 键裂解反应的一种有前途的策略。[13]
固态光化学描述了对多种工业的重要性驱动反应的广泛。紫外线固化的聚合已在生产中司空见惯,用于打印,涂料和添加剂制造。1光降解是食品科学,药物,聚合物,太阳能电池和空间材料的障碍。2 - 5光电半导体被用作异质光催化剂的异质光催化剂,以提高各种反应的效率,6长期用作光发射二极管和光伏特细胞。7 - 9这些应用都是一个积极的科学研究领域,因为社区正在寻找更绿色的过程和能源解决方案。光化学在光合作用,皮肤损伤和视力等生物系统中也很普遍。10
有机无机杂交光催化剂用于水分割的利用引起了显着的关注,因为它们能够结合两种材料的优势并产生协同效应。但是,由于对这两个组成部分之间的相互作用以及其准备过程的复杂性的相互作用有限,它们仍然远非实际应用。在此,通过将糖化的共轭聚合物与TIO 2-x介孔球相结合,以制备高效率杂种杂种光催化剂。与亲水性寡醇(乙二醇)侧链的共轭聚合物的功能不仅可以促进结合聚合物在水中的分散体,而且还可以促进与TIO 2 -X形成稳定的异质结纳米颗粒的相互作用。在35.7 mmol H-1 g-1的365 nm时,在PT共同催化剂存在下,氢的量子产率为53.3%,氢的演化速率为35.7 mmol H-1 g-1。基于飞秒瞬态吸收光谱和原位分析的高级光物理研究,XPS分析揭示了II型异质结接口处的电荷转移机制。这项工作表明了糖化聚合物在构建用于光催化氢生产的杂交异质结中的前景,并深入了解了这种异质结光催化剂的高光催化性能。
本期刊文章的自构建后版本可在Linköping大学机构存储库(DIVA)上获得:http://urn.kb.se/resolve?urn = urn= urnt:nbn:se:se:se:liu:diva-189492 N.B. N.B. N.B. N.B.:引用这项工作时,请引用原始出版物。abutalib,M。M.,Alghamdi,H。M.,Rajeh,A.,Nur,O.,Hezmad,A.M.,Mannaa,M.A.,(2022),RGO/FEMOO4作为高效光催化剂,用于在疟疾绿色,势酚和H2 Nefteral ogen的降解下降解的高效光催化剂,用于降级32955-32968。 https://doi.org/10.1016/j.ijhydene.2022.07.189
光催化剂被广泛用于解决环境污染和能量短缺问题,例如光催化污染物降解,抗菌活性和氢产生。1–4作为一种新的且有希望的光催化剂,石墨氮化碳(G-C 3 N 4)引起了广泛的兴趣,因为它具有可见的光反应,出色的化学稳定性和易于制备技术。同时,其适当的电体带结构符合水分分裂过程中氢气和氧气进化的先决条件。一些缺点限制了其进一步的应用,例如光生电子/孔对的快速重组和低可见光响应。制定了各种策略以改善光催化活性,包括元素掺杂,纳米结构形成和异缝结构。5–12
摘要:随着单原子引入光催化,基底电子和几何结构的微小变化可以带来更高的能量转换效率,而其背后的微观动力学却很少被阐明。本文采用实时时间相关密度泛函理论,探索了微观尺度上单原子光催化剂(SAPC)在水分解中的超快电子和结构动力学。结果表明,与传统光催化剂相比,负载在石墨相氮化碳上的单原子Pt大大促进了光生载流子,并有效地将激发电子与空穴分离,延长了激发载流子的寿命。灵活的氧化态(Pt 2+ 、Pt 0 或Pt 3+ )使单原子作为活性位点来吸附反应物并在光反应过程的不同阶段作为电荷转移桥催化反应。我们的研究结果为单原子光催化反应提供了深刻的见解,并有利于高效SAPC的设计。关键词:单原子光催化剂、热电子/空穴电荷转移、超快载流子和结构动力学、时间相关密度泛函理论、水分解