通过将10 wt%的各种碳基纳米材料掺入10 wt%的纳米材料作为修饰二氧化钛剂,制备了一系列基于TIO 2的光催化剂。更具体地说,通过使用四种不同的碳纳米结构的甲醇浸入浸渍方法来修改商业TiO 2 P25:单壁碳纳米管(SWCNT),部分降低了氧化石墨烯(PRGO),石墨(GI)和二氮碳(GCN)。表征结果(XPS和RAMAN)预期重要的界面现象的发生,对于样品TiO 2 /SWCNT和TIO 2 /PRGO的样本优先,在Ti 2P贡献中具有1.35 EV和1.54 eV的结合能位移。这些发现可能与碳/氧化物界面处的电子孔迁移率提高有关。重要的是,这两个样品构成了若丹明B(RHB)光降解的最有希望的光催化剂,在小于2小时的转化率接近100%。这些有希望的结果必须与形成的异质结构结构的内在物理化学变化以及能够同时吸附和降解RHB的复合材料的潜在双重作用有关。可环性测试证实了复合材料的性能(例如TiO 2 /swcnt,1 h内的100%降解),这是由于吸附 /降解能力的组合,尽管由于未连接的碳纳米管内部腔内局部腔内的部分阻断了几个周期后的再生,但由于未连接的RHB的内部空腔而进行了部分障碍。在这些反应条件下,若丹明-B黄烷染料通过去乙基化途径降解。
摘要:描述的是用于活细胞的配体指导的催化剂,生物正交化学的光催化激活。催化基是通过束缚的配体定位于DNA或微管蛋白的,红光(660 nm)光催化用于引发一系列DHTZ氧化,分子内二二二二二二二二二二二二氧化物,以及消除释放现场化合物的消除。Silarhodamine(SiR)染料,更常用地用作生物荧光团,用作具有高细胞相容性并产生最小单线氧的光催化剂。Hoechst染料(siR-H)和紫杉醇(siR-T)的商业上可用的共轭物分别用于将SIR定位于细胞核和微管蛋白。计算用于帮助设计新的氧化还原激活的光电,以释放苯酚或N-CA4,一种微管二动剂。在模型研究中,仅使用2 µm的SIR和40 µM光地摄影,在5分钟内完成了分离。原位光谱研究支持一种涉及快速分子内多尔斯 - 阿尔德反应的机制和确定消除步骤的速率。在细胞研究中,这种分离过程在光(25 nm)和siR-H染料(500 nm)的低浓度下成功。分解N-CA4会导致微管解聚和伴随细胞区域的降低。对照研究表明,H-H爵士在细胞内而不是在细胞外环境中催化脉冲。使用Sir-T,相同的染料作为光催化剂和荧光报告剂进行微管蛋白去聚合,并且在共聚焦显微镜下,由于活细胞中光催化脉冲,可以实时可视化微管蛋白去聚合。
On the Evaluation of Charge Transport and Reaction Kinetics in Z- Scheme Semiconductor Particles for Solar Water Splitting Rohini Bala Chandran, Shane Ardo and Adam Z. Weber © 2017 ECS - The Electrochemical Society ECS Meeting Abstracts, Volume MA2017-02, L02-Photocatalysts, Photoelectrochemical Cells and Solar Fuels 8 Citation Rohini Bala Chandran等人2017年会议。abstr。MA2017-02 1871 DOI 10.1149/MA2017-02/42/1871抽象太阳能分解是一种有前途的方法,可以以稳定的化学键的形式转换和存储太阳能。 在此处考虑,在存在可溶性氧化还原式穿梭的情况下,悬浮在水溶液中的半导体颗粒(光催化剂)的串联粒子 - 悬浮反应器设计1(如图1所示)。 使用设备尺度的数值模型1,我们确定了反应器的设计和光催化剂和氧化还原式班车的浓度,可通过扩散驱动的物种运输产生高达3.8%的太阳能到氢转化效率。 通过自然对流促进物种混合预测,较高的能量转化效率。 在此设计中,每个半导体粒子都被电解质润湿,电解质至少包含四种化学物种,这些化学物质可以参与颗粒表面上的氧化还原反应。 因此,选择性表面催化对于达到高太阳能到氢转化效率至关重要。 在本研究中,我们开发了一个数值模型,以评估球形半导体粒子内以及跨半导体 - 电解质电解质界面的光生电荷接载体的转运和动力学。 Z. 见面。 abstr。MA2017-02 1871 DOI 10.1149/MA2017-02/42/1871抽象太阳能分解是一种有前途的方法,可以以稳定的化学键的形式转换和存储太阳能。在此处考虑,在存在可溶性氧化还原式穿梭的情况下,悬浮在水溶液中的半导体颗粒(光催化剂)的串联粒子 - 悬浮反应器设计1(如图1所示)。使用设备尺度的数值模型1,我们确定了反应器的设计和光催化剂和氧化还原式班车的浓度,可通过扩散驱动的物种运输产生高达3.8%的太阳能到氢转化效率。通过自然对流促进物种混合预测,较高的能量转化效率。在此设计中,每个半导体粒子都被电解质润湿,电解质至少包含四种化学物种,这些化学物质可以参与颗粒表面上的氧化还原反应。因此,选择性表面催化对于达到高太阳能到氢转化效率至关重要。在本研究中,我们开发了一个数值模型,以评估球形半导体粒子内以及跨半导体 - 电解质电解质界面的光生电荷接载体的转运和动力学。Z.见面。abstr。通过与电荷载体传输方程保持一致的泊松玻尔兹曼方程自我来获得粒子内的电势分布。在半导体 - 电解质界面上大多数和少数电荷载体的通量考虑了界面上的所有合理的氧化还原反应。建模结果阐明了反应选择性不仅对动力学参数的依赖性,还阐明了诸如辐照度,工作温度,粒径,重组途径和电解质电解化学电位等变量。结果进一步解释,以确定策略以提高Z-Scheme水分分割系统的能量转换效率。参考文献(1)Chandran,R。B。;布雷恩(Breen); Shao,Y。; Ardo,S。;韦伯,A。2016,MA2016-01(38),1919– 1919年。2016,MA2016-01(38),1919– 1919年。
摘要:半导体是现代电气设备和机器的基本构件和基本元件。N型金属氧化物半导体(MOS)因其独特的性能和广泛的应用而特别引人注目。由于其广泛的应用和重要性,半导体被认为在促进现代生活方面发挥着重要作用。医学、农业、机械、核能、生物技术、通信和数据操作是从半导体应用中受益最多的领域。因此,本综述试图总结半导体的重要特征,特别是MOS纳米粒子的结构和特性。总结了MOS和薄膜晶体管的应用,重点介绍了它们作为生物修复光催化剂、太阳能和氢电池以及传感器设备的应用。
ISMER的研究活动(用于环境修复的创新智能材料)小组的重点是开发创新材料,它们通过不同的方法(照片降低,吸附及其组合)在水和空气净化中的表征和应用。具体来说,ISMER组参与了废水处理和持续性有机和无机污染物的水的水平处理和净化水。还研究了空气净化,这要归功于涉及主要用于建筑部门的创新光催化剂的专用研究线。最近,除了这些活动外,我们还在开发创新技术,用于通过水分解和太阳能蒸汽发生器进行净化来生产“绿色”能量(氢)。该小组还参与了LCA计算,以确定产品和过程的环境影响。
光化学环加成和环化反应为在各种(张力)环系统中构建碳-碳和碳-杂原子键提供了强大的合成工具,因此在合成复杂的生物活性化合物和新材料方面发挥了重要作用。然而,使用紫外线照射来促进这些过程的传统方法通常会受到竞争性和不可控的副反应的影响,从而限制了它们广泛的合成适用性。考虑到这一点,这些反应是使用能量转移 (EnT) 催化和流动化学开发温和可见光介导策略的理想目标。同时,仍然需要进行详细的筛选以处理复杂的 EnT 光催化剂设计、反应优化和光环加成过程的放大。
摘要。如今,世界上水污染的状况越来越严重,这引起了广泛的关注。 传统的水污染处理技术主要包括膜分离方法,催化剂治疗和吸附剂治疗以及纳米水污染处理技术的优势比传统技术更大。 ,例如纳米 - 光催化剂,纳米滤膜,纳米吸附剂。 例如,MOF材料,无机膜,聚合物膜和由铁金属氧化物和过渡金属氧化物组成的纳米吸附剂。近年来,随着纳米技术的持续发展,上述文章中提到的纳米材料技术在处理污染物或不含污染物中的纳米材料技术表现出了出色的表现。 本文主要阐述其各自的优势和一般绩效,并选择相关技术的示例进行讨论。 在此基础上,通过分析文章中引用的研究示例的相关原则和数据,我们可以为未来的研究提供某些想法和开创性的想法。如今,世界上水污染的状况越来越严重,这引起了广泛的关注。传统的水污染处理技术主要包括膜分离方法,催化剂治疗和吸附剂治疗以及纳米水污染处理技术的优势比传统技术更大。,例如纳米 - 光催化剂,纳米滤膜,纳米吸附剂。例如,MOF材料,无机膜,聚合物膜和由铁金属氧化物和过渡金属氧化物组成的纳米吸附剂。近年来,随着纳米技术的持续发展,上述文章中提到的纳米材料技术在处理污染物或不含污染物中的纳米材料技术表现出了出色的表现。本文主要阐述其各自的优势和一般绩效,并选择相关技术的示例进行讨论。在此基础上,通过分析文章中引用的研究示例的相关原则和数据,我们可以为未来的研究提供某些想法和开创性的想法。