我们介绍了一种使用三层光刻胶工艺和电子束光刻技术,通过一次曝光制造出大量微观空气桥的技术。该技术能够形成具有牢固的金属-金属或金属-基板连接的空气桥。该技术已在由 400 个相同的表面栅极组成的电子隧道装置中得到应用,用于定义量子线,其中空气桥用作表面栅极的悬浮连接。该技术使我们能够创建大量两端均开放的均匀一维通道。在本文中,我们概述了制造工艺的细节,以及该技术开发中存在的挑战的研究和解决方案,其中包括使用水-IPA(异丙醇)显影剂、校准光刻胶厚度和对开发进行数值模拟。
技术正在迅速发展,在新的方法和材料方面不断突破其极限。在这种情况下,3D(亚)微打印平台尤其令人感兴趣,因为它们可以制备具有高分辨率和任意复杂度的3D微纳米结构。这方面最有前途的技术之一是直接激光写入(DLW),[1,2]这是一种基于双光子聚合反应的增材制造技术,可用于获得高通量[3]和低于100纳米的分辨率的(亚)微米物体和图案。 [4]为实现此目的,DLW利用聚焦的长波长激光飞秒脉冲照射能够在高能辐射下交联的感光树脂。 [5]虽然树脂的吸收率与激光不匹配,但在焦点处,辐射强度足够高,以至于可能发生多光子吸收现象并引发聚合过程(或触发正性光刻胶的分解)。由于抗蚀剂对激光是透明的,因此打印仅发生在焦点周围非常小的体积内(“体素”,即二维“像素”的三维模拟)。通过移动后者,只需一个简单的步骤即可获得复杂的三维架构。由于其灵活性以及易于集成功能材料的可能性,DLW 已在 MEMS、[6] 光子学、[7] 表面改性、[8] 安全系统、[9] 和生物医学研究等领域找到了多种应用。[10,11]
基于多光子吸收的三维 (3D) 激光微打印和纳米打印已从早期的科学发现发展到工业制造工艺,例如用于先进的微光学元件。然而,到目前为止,大多数已实现的 3D 结构仅由单一聚合物材料组成。在这里,我们回顾了纳米和微米尺度上的多种材料的 3D 打印。我们从使用多光子光刻胶已实现的材料特性开始。打印材料包括本体聚合物、导电聚合物、金属、纳米多孔聚合物、硅玻璃、硫属化物玻璃、无机单晶、天然聚合物、刺激响应材料和聚合物复合材料。接下来,我们回顾手动和自动化过程,通过顺序曝光多种光刻胶作为 2D 多色打印的 3D 类似物,在单个 3D 结构中实现不同的材料特性。讨论了来自生物学、光学、力学和电子学的有益示例。一种新兴方法(在 2D 图形打印中没有对应方法)仅使用一种光刻胶即可打印出将不同材料特性组合在一个 3D 结构中的 3D 结构。在 3D 打印过程中施加的受控刺激定义并确定了体素级别的材料特性。改变激光功率和/或波长,或应用准静态电场,可以无缝操控所需的材料特性。
为了推进直接激光写入 (DLW) 的应用,打印结构的适应性至关重要,这促使人们转向打印由不同材料组成和/或可以根据需要部分或全部擦除的结构。然而,包含这些特征的大多数结构通常通过复杂的过程打印或需要苛刻的显影技术。本文介绍了一种用于 DLW 的独特光刻胶,它能够打印可通过暴露在黑暗中擦除的 3D 微结构。具体而言,基于光稳定动态材料的微结构在持续受到绿光照射时保持稳定,但一旦关闭光源就会降解。通过延时扫描电子显微镜深入分析了打印材料的降解和光稳定性。结果表明,这些光刻胶可用于赋予打印结构响应行为,并且至关重要的是,可用作临时锁定机制来控制移动结构特征的释放。
然后将铬图案(不透明)与光刻胶涂层表面接触。“对准”是整个微系统制造过程中最关键的步骤之一。一微米或更小的错位可能会损坏器件和晶圆上的所有器件。每一层都必须正确对准,并符合前一层和后续层的规格
问题:光刻胶曝光不足 ...................................... 1-1 1.2 有效故障排除和过程控制指南 ...................................... 1-1 1.3 参数分析 ...................................................... 1-2 1.3.1 头脑风暴 ...................................................... 1-2 1.3.2 过程审核 ...................................................... 1-3 1.3.3 初始能力研究 ...................................................... 1-3 1.3.4 优化 ...................................................... 1-3 1.3.5 确认和最终能力评估 ...................................... 1-3 1.3.6 参数控制 ...................................................... 1-3