光反射在许多现代技术中起着至关重要的作用。本文给出了由单一材料制成的通用平面结构在任何方向和任何偏振下的最大反射功率的解析表达式,该结构由复杂的标量磁化率表示。最大化反射的最佳光物质相互作用问题被表述为感应电流优化问题的解,受能量守恒和被动性约束,通过使用拉格朗日对偶,该问题允许全局上限。导出的上限适用于广泛的平面结构,包括超表面、光栅、均质膜、光子晶体板,更一般地说,适用于任何非均匀平面结构,无论其几何细节如何。这些界限还设定了给定有损材料的最小可能厚度的限制,以实现所需的反射率。此外,我们的结果允许发现与现有设计相比,反射结构效率可以大幅提高的参数区域。给出了这些发现对设计由真实的、不完美(即有损)材料制成的优质紧凑反射元件的影响的例子,例如超薄高效的光栅、偏振转换器和用于太阳/激光帆的轻型镜子。
建筑一体化太阳能系统 - 一种太阳能系统,包括将光伏模块集成到建筑围护结构系统,例如垂直立面(包括玻璃和其他材料)、半透明天窗系统、屋顶材料和窗户遮阳。建筑安装太阳能收集器 - 一组太阳能收集器,牢固地安装在屋顶支架上的架子上,或集成到建筑材料中,例如屋顶瓦片、墙板或任何合法许可和/或建造的建筑物或结构的窗户中,用于发电。附属用途 - 明显且通常与主要太阳能系统偶然相关且从属于主要太阳能系统的用途,与主要太阳能系统位于同一地段。退役计划 - 拆除未使用或不活动的太阳能系统的详细步骤、消除所有安全隐患、修复场地、实现这些要求的成本估算以及为此提供的财务保障。嵌入式太阳能系统 - 屋顶安装的太阳能系统,其太阳能电池板与屋顶表面齐平安装,不能倾斜或升高。独立式或地面安装的太阳能系统 - 通过杆或其他安装系统固定在地面上的太阳能系统,与任何其他发电结构分离。眩光 - 以商业上合理的方式确定的强度足以引起烦恼、不适或任何重大方面视觉性能和可见度损失的光反射效果。
缩写 AEMO 澳大利亚能源市场运营商 DEM 能源和矿业部 DO PD 代码的预期结果 DTS/DPF 视为满足的标准/指定性能特征 EPA 环境保护局 EPBC 环境保护和生物多样性保护法 1999 ESCOSA 南澳大利亚基本服务委员会 通量 反射光到太阳能接收器的流速。眩光 相对于环境光更连续的过亮光源。闪烁 瞬间的闪光。ha 公顷 定日镜 地面安装的双轴太阳能跟踪镜,将太阳反射到接收器上。定日镜排列在接收器前面的一排,为 RayGen PV Ultra 系统提供集中的光线。Km 公里 kV 千伏 m 米 MNES 国家环境重要事项 MV 兆伏 MW 兆瓦 MWh 兆瓦时 NVC 原生植被委员会 眼部安全区 GHD 对 RayGen 太阳能接收器眩光的研究定义的区域,根据与太阳能接收器的距离和方向定义对观看者眼睛的不同影响。日照 定日镜处于跟踪太阳并将光反射到接收器的状态。ORC 有机朗肯循环发动机 – 一种利用热差发电的发动机,通常用于废热和地热应用,这是 RayGen 热力水力技术的关键部分。OTR 技术监管机构办公室
1。数学(40个标记): - 数字系统,多项式,两个变量中的线性方程,二次方程,算术进展,坐标几何学,三角测定,三角形,概率,三角形,三角形,四边形,四边形,四边形,圈子,圆,统计,统计。2。科学(60分):: a)物理学(20分): - 光反射和倒置,电力,电流的磁效应。人类的眼睛和丰富多彩的世界,能源的来源。b)化学(20分): - 原子和分子,原子结构,反应和方程,酸,碱和盐,金属和非金属,碳及其化合物,元素的定期分类。c)生物学(20分): - 植物和人类的有性繁殖(生物如何繁殖),控制与协调,生命过程,遗传和进化,我们的环境。3。英语(20分): - 时,语音,词汇和错误校正,介词,标签问题,文章和确定词以及语音的部分。4。心理能力测试和推理(30分):-1。逻辑推理: - 陈述和结论,参数和假设,三段论,数字序列和模式; 2。数学推理: - 数字和操作,代数表达式和方程,几何和月经,数据分析和解释; 3。非语言推理: - 视觉难题和图案,镜像图像和反射,立方体和骰子,纸张折叠和切割; 4。言语推理: - 类比和关系,单词形成和模式,编码和解码,分类和分类; 5。批判性思维: - 确定偏见和假设,评估论点和证据,得出推论和得出结论,解决道德或道德困境。
商业无人机(或无人驾驶飞机)每年以14%的速度增长,因为远程行驶的飞船比用于许多功能的试验手工艺品更简单,更安全,更便宜,并且可能更小。除了无人机在军事应用和包装交付方面的广泛宣传的潜力外,无人驾驶飞机(UAV)还代表了一种更简单,更负担得起的解决方案,用于检查桥梁,监视电源线,检查农业领域的状况,喷涂农作物并执行其他工业任务。此外,城市空气流动性(UAM)市场具有巨大的潜力,因为拥挤的领空和交通拥堵产生了对小型飞机的需求,该飞机可以升空并降落在狭窄的空间中。垂直起飞和着陆(VTOL)飞机部门是当今日益注意力和投资的主题,这是有充分理由的。航空航天领导人,包括空中客车,劳斯莱斯和贝尔,正在开发产品解决方案,希望利用Booz Allen估计超过5000亿美元的市场机会。由于许多这些飞机可以携带两名或四名乘客,因此通过自治消除了飞行员的有效载荷能力增加了25%至50%,从而创造了很大的成本优势。但是,使VTOL飞机完全自主涉及到巨大的工程挑战。他们需要安全处理所有可能的情况,而无需人工操作员的干预。他们必须在每个可能的天气条件下从垂直飞行到水平飞行的困难过渡。,他们必须准确地感知周围的物理环境,以便它们可以可靠地区分无害的视觉现象,例如光反射与电势
油菜籽在发育过程中含有叶绿素,使其呈现绿色。随着种子的成熟,它们会呈现出黑色、红褐色到黄色等颜色。黑色和红褐色种子的种皮会积累色素,而黄籽品种的种皮透明,可以露出胚的颜色。研究表明,黄籽油菜籽比黑籽品种休眠期短、发芽更简单、含油量更高,因此培育黄籽油菜籽是提高油分含量的有效方法(Yang et al.,2021)。芥菜和油菜黄籽品种的鉴别相对简单,因为纯黄色表型在遗传上是稳定的(Li et al.,2012;Chen et al.,2015)。然而,由于种皮颜色变异复杂,包括黄色中夹杂黑色斑点、斑块或棕色环等杂色,油菜种皮一直未能获得稳定的纯黄色后代,且分离后代的种皮颜色呈现连续变异(刘,1992;Auger等,2010;Qu等,2013),因此准确、高效地测定油菜种皮颜色仍是一项关键且具有挑战性的任务。许多研究涉及油菜籽颜色的鉴别(Li等,2001;Somers等,2001;Zhang等,2006;Baetzel等,2003;Tańska等,2005;Li等,2012;Liu等,2005;Ye等,2018)。例如,Li等(2001)通过目视观察来评估甘蓝型油菜的黄籽程度,这种方法简单但过于依赖观察者,导致识别可能不准确。Somers等(2001)利用光反射来评估黄籽颜色等级,通过测量反射值并计算籽粒颜色指数或光反射值。该方法虽然较为客观,但仅能捕捉亮度等单维颜色数据,忽略了原始材料的丰富信息。为了解决这一限制,许多学者致力于通过 RGB 颜色系统进行数字图像分析( Zhang et al.,2006 ; Baetzel et al.,2003 ; Ta ńska et al.,2005 ; Li et al.,2012 ; Liu et al.,2005 ; Ye et al.,2018 )。然而,油菜籽表皮颜色复杂且相似,精准识别颜色具有挑战性,现有的技术缺乏可靠性和标准化。因此,准确、有效地测量黄籽油菜的颜色仍然至关重要。化学计量学和计算机技术的最新进展导致了近红外光谱技术(NIRS)的发展,这是一种结合物体图像和光谱数据的技术。 NIRS 以其速度快、无损和高效而闻名,被广泛用于农产品的快速、无损分析。多项研究已经证明了它的实用性(Guo 等人,2019年;布等人,2023;梁等人,2023;刘等人,2021;佩蒂斯科等人,2010;森等人,2018;刘等人,2022;张等人,2020;魏等人,2020;张等人,2018;江等,2017;李等人,2022;江等,2018;他等人,2022)。例如,郭等人。 (2019) 使用 NIRS 成像系统 (380 – 1,000 nm) 来准确量化掺假大米,而 Bu 等人。 (2023) 将高光谱成像与卷积神经网络相结合,建立了高粱品种识别的智能模型,准确率超越了现有模型。该技术也已应用于油菜生长诊断。例如,刘等人 (2021) 开发了一种基于高光谱技术的检测算法来预测甘蓝型油菜中的油酸含量。Petisco 等人 (2010) 研究了甘蓝型油菜的可见光和近红外光谱。
从十八世纪开始,断口学就被广泛应用于研究金属材料断裂表面的宏观外观 [1],而从十九世纪末开始,断口学又广泛应用于研究脆性材料,例如陶瓷和玻璃 [2]。然而,模拟技术只适用于固态材料 [3,4]。裂纹发生后的断口形貌信息可用于确定裂纹起始区。本文介绍了在对不合格芯片进行故障分析时获得的一些结果。图 1 所示的结果包括微尺度断口学特征,例如扭曲纹 (th)、速度纹 (vh)、瓦尔纳线 (w)、条纹 (s) 和停止线 (a) [5]。施加在芯片上的驱动力可以是直接的,也可以是间接的。当驱动力直接接触芯片时,它通常与裂纹起始区有关,例如从芯片侧壁分支的裂纹、机械分离晶圆的效应、超声波引线键合的键合焊盘上的凹坑效应或由于芯片放置不当导致的芯片边缘脱落。当驱动力与芯片间接接触时,在树脂去封装之前对封装进行宏观分析对于观察封装上的划痕或压痕等机械特征至关重要。这对于防止对断裂机制的误解至关重要。本文的目的是展示去封装的方法和断口分析的应用,作为理解发光二极管 (LED) 芯片裂纹起源的新视角。如今的 LED 芯片的长宽比至少比硅集成电路 (IC) 小五倍。LED 芯片封装在杯状预制硅胶中以增强光反射,而不是使用带有平底 IC 的深色环氧树脂封装剂。用于分析硅 IC 芯片裂纹的无损技术是 X 射线显微镜和扫描声学显微镜 (SAM) [6,7]。LED 的小长宽比对 X 射线显微镜处理和寻找裂纹线是一个挑战,我们最不希望丢失客户退货样品。SAM 正在传输和检测反射声波;这在平面 IC 封装中效果很好
erovskite太阳能电池(PSC)近年来取得了前所未有的进展,最高的认证效率达到了25%以上1。为了进一步提高PSC的效率和过度提高单一结构太阳能电池的详细平衡理论限制,通常通过与成熟光伏技术的宽带(WBG)Perovskites进行整合来应用串联太阳能电池,例如CrystallineIne,例如Crystallineine Silicon(C-SI),Copper(C-SI),Copper(copper),copper(in,ga)2(cigs per)2(cigs per)2 - 4或其他cig pers peh of pers pers peh of peacs 2 - 4或其他。在这些基于钙钛矿的串联光伏技术中,Perovskite – Silicon串联太阳能电池已成为一种易于商业化的,报告的有效性超过29%(参考文献8)。单片的两末端钙钛矿 - 锡的串联设备仍然主要基于前侧和后方胶片和后侧胶合晶体C-SI的基础,不幸的是,由于光反射9造成的光电损失很大。双面纹理的C-SI具有增加的光捕捞,可为钙钛矿 - 硅串联设备提供高效的上限10-12。第一个完全纹理的钙钛矿 - 丝状细胞具有前纹理的质地,其尺寸最高为6 µm,其中WBG钙晶硅质的质感硅上的硅酸盐是通过蒸发和溶液涂层的组合结合形成的。最近已证明在硅前表面上的质地较小或以下,具有可比的抗反省特性,可以使用更简单的基于单步分解的基于单步的叶片涂料或自旋涂料或旋转甲基ODS 11、11、12,从而实现了完全纹理的perovskite-silicon串联装置。然而,所报道的钙钛矿 - 硅串联太阳能电池的效率仅达到25-26%,低于双面纹理的硅结构的全部潜力。比在平坦硅11-14上产生的串联电池的低功率转换效率(PCE)主要由较小的开路电压(V OC)和填充因子更小。在技术上仍然很难使用溶液方法沉积钙钛矿层以覆盖纹理的硅,甚至
应用信息学系,托马斯·巴塔大学(Tomas Bata University)位于兹林,捷克共和国兹林:10.15199/48.2023.01.03目前,纳米antennas代表着未来的巨大潜力,科学界正在为开发这些设备付出很多努力。许多出版物都涉及不同类型的等离激元,介电或混合动力,以及纳米ant的结构,例如偶极子,Yagi-uda等;因此,想法是创建一篇文章,总结了过去五年中使用这些设备的可能性。本文重点介绍了当前研究的天线类型的简要描述,尤其是在科学领域,并列出了纳米antennas的最常见应用。Streszczenie。corecnie nanoantenymająZnacznyPotencjałNaPrzyszłość,społecznośćNaukowawkładaWkładaWieleWieleWyleWyleWyleWosiVowrozwójtych tychurządzeńwiele publikacji dotyczyró目标Typów,Takich Jak Plazmoniczne,Dielektryczne Lub Hybrydowe,Oraz Struktur nanoanten,Takich Jak Dipol,Yagi-uda i inne inne; ZrodziłSięCpomysłStworzeniaartykułuPodsumowującegoMoêmoêmoMmliwościwykorzystania tychurządzedzevenwciąguostatnichpięciuęciuciuciucipiciutla。w artykule skupionosięnazwięzłejCharakterystycecorecnie badanychrodzajów天线,ZwłaszczaWobszarze naukowym,Oraz wymieniononajczęstszeStszeZastosovaniaZastosowania anten nanoAnoanteny。在无线电工程中,天线将电流和磁电流转换为无线电波,相反。[1]微型化的需求导致需要调整天线的尺寸至纳米阶。换句话说,每秒可以在此频段中传输Terabits。(przeglądzastosowańnanoanten)关键字:纳米反纳纳,通信,材料,纳米技术,纳米技术SłowaKluczowe:nanoantenny,zastosovanie nanoanten介绍,如今,天线是无线信息传输技术的必不可少的信息,以及他们的传输技术。但是,这导致了困难,因为纳米 - 安妮纳斯无法像常规天线(其他频率)相同。纳米antennas主要按照THZ的顺序工作,该顺序在通信系统中提供了新的可能性,因为较高的频率可确保更高的速度[2,3,4,5]。另一个优势在于在小型设备中实施的大小和可能性,尤其是在生物医学应用中[6,7,8]。由于尺寸,纳米antennas是很年轻的设备,因此没有悠久的历史。1973年,罗伯特·贝利(Robert L. Bailey)和詹姆斯·C·弗莱彻(James C. Fletcher)获得了电磁波转换器的专利。他们的专利设备非常接近现代的纳米安妮娜设备。在1984年,Alvin M. Marks获得了一种设备的专利,该设备使用了亚微米天线将光直接转化为电力。[9]。纳米annna由三个部分 - 接地平面,光学共振腔和天线制成。天线吸收电磁波,地面平面将光反射回天线,光谐振腔弯曲,并使用接地平面将光集中到天线。[1]。本评论分为四个部分。结论是该论文的贡献。第一部分描述了纳米antennas的类型及其比较,然后概述了纳米antennas的实施的部分。第三部分包含纳米安妮纳斯的申请,其中包括一个摘要表,显示了该应用程序的示例和相关出版物。纳米antennas的类型有几种方法可以分割光学纳米ant剂,例如结构(yagi-uda,偶极),应用(医疗设备)或技术。在本文中选择了最后提到的划分,该文章将天线划分为等离子(金属),介电或金属介电纳米annoantennas。