项目描述:NDSU 化学与生物化学系 Dmitri Kilin 教授的研究实验室有多个本科生研究助理实习职位空缺,用于光反应计算建模研究项目。本科生研究助理的职责包括建立分子模型、有针对性地启动计算化学软件以及分析计算反应产物和中间体。所有活动均通过通信软件远程执行。培训和知识转移是实习的一部分。每周参与的起始时间为 10 小时,每小时 12 美元。这些时间包括参加小组会议(2 小时)和每周进度报告(0.5 小时)。任命条件的升级和延期取决于双方的协议和进展。这些职位的支持热线通过国家科学基金会研究补助金安排。必备资格:这是从大一开始的本科生入门级职位。没有要求参加特定课程。希望实习生有意从事 STEM 职业并在实习前或实习期间参加 STEM 相关课程。未来职业:成功完成研究实习通常会产生同行评审出版物。实习期间获得的化学反应计算建模技能和培训为教育、学术界和各行各业研发部门的多种职业道路打开了大门。
Faraday旋转是固体,液体和气体的磁光反应中的基本效应。具有较大Verdet常数的材料在光学调节器,传感器和非转录器件(例如光学隔离器)中应用。在这里,我们证明了光的极化平面在中等磁力的HBN封装的WSE 2和Mose 2的HBN封装的单层中表现出巨大的法拉第旋转,在A激子转变周围表现出了几个度的巨大旋转。对于可见性方案中的任何材料,这将导致最高已知的VERDET常数为-1.9×10 7 deg T -1 cm -1。此外,与单层相比,HBN封装的双层MOS 2中的层间激子具有相反的符号的大型Verdet常数(VIL≈+2×10 5 deg T-1 cm-2)。巨大的法拉第旋转是由于原子较薄的半导体过渡金属二进制基因源中的巨大振荡器强度和激子的高g因子。我们推断出HBN封装的WSE 2和Mose 2单层的完全平面内复合物介电张量,这对于2D异质结构的Kerr,Faraday和Magneto-Circular二分法谱的预测至关重要。我们的结果在超薄光学极化设备中的二维材料的潜在使用中提出了至关重要的进步。
脂蛋白血症。前列腺素代谢 - COX 和 LOX 途径。脂质累积病和脂肪肝。牛奶脂质:分类和物理特性。自氧化、自氧化的副产物、影响因素、预防和测量;抗氧化剂 - 酶和非酶抗氧化剂。 第三单元:碳水化合物、矿物质和维生素 碳水化合物:不同碳水化合物的分类和特性。纤维素、糖原、半纤维素和果胶。葡聚糖和麦芽葡聚糖的生产。醛糖和酮糖。差向异构体。乳糖:存在、异构体、分子结构。牛奶寡糖、结构、技术方面和健康促进方面。糖酵解和糖异生概述 - 调节。柠檬酸循环和调节。戊糖磷酸途径和糖醛酸途径。糖原代谢和调节。糖原累积病。半乳糖血症。果糖不耐症和果糖尿症。乙醛酸循环。科里循环。光合作用——光反应、循环和非循环光合磷酸化。暗反应——卡尔文循环。矿物质:主要矿物质和次要矿物质。水溶性维生素:硫胺素;核黄素;烟酸;泛酸;吡哆醇;生物素;叶酸和氰钴胺素。脂溶性维生素——维生素 A 和 D。第四单元:酶酶——分类和一般特性。pH、温度和底物浓度的影响。酶抑制——竞争性、非竞争性和非竞争性抑制剂的影响。辅酶和辅因子。酶的调节——反馈抑制和共价修饰。抗体酶、核酶、DNA 酶。固定化酶——固定化方法、应用。参考 T4 溶菌酶的酶工程。酶电极。工业和
生物学 生物世界的多样性:生物世界:生物世界的多样性,分类类别,生物学分类:界(原核生物界、原生生物界、真菌界、植物界和动物界),病毒、类病毒和地衣,植物界:藻类、苔藓植物、蕨类植物、裸子植物、被子植物,动物界:动物分类的基础和动物分类植物和动物的结构组织:开花植物的形态:根、茎、叶、花序、花、果实、种子,典型的开花植物的半技术描述,一些重要科的描述,开花植物的解剖学:组织系统,双子叶植物和单子叶植物的解剖学动物的结构组织:器官和器官系统,两栖动物 - 青蛙细胞:结构和功能:细胞:生命:细胞、细胞理论、细胞概述、原核细胞、真核细胞 生物分子:生物体化学成分分析、初级和次级代谢物、生物大分子、蛋白质、多糖、核酸、蛋白质结构、酶 细胞周期和细胞分裂:细胞周期、有丝分裂和减数分裂及其意义 植物生理学:高等植物的光合作用:光合作用、早期实验、光合作用的位置、参与光合作用的色素、光反应、电子传递、ATP 和 NADPH 的合成和利用、C4 途径、光呼吸、影响光合作用的因素 植物的呼吸作用:植物呼吸吗?糖酵解、发酵、有氧呼吸、呼吸平衡表、克雷布斯/柠檬酸循环、呼吸商植物生长和发育:生长、分化、去分化和再分化、发育、植物生长调节剂人体生理学:呼吸和气体交换:呼吸器官、呼吸机制、气体交换、气体运输、呼吸调节、呼吸系统疾病体液和循环:组织液-血液、淋巴、循环途径、双循环、心脏活动调节、循环系统疾病排泄产物及其消除:人体排泄系统、尿液形成、小管功能、滤液浓缩机制、肾功能调节、排尿、其他器官在排泄中的作用、排泄系统疾病
TCP基因家族成员在植物生长和发育中发挥了多种功能,并以在该家族中发现的第一个三个家庭成员的命名,即TB1(Teosinte分支1),细胞增多菌(CYC)和增殖的细胞因子1/2(PCF1/2)。氮(N)是饲料产量的关键元素;但是,氮肥的过度应用可以增加农业生产成本和环境压力。因此,发现低N耐受基因的发现对于上燕麦种质和生态保护的遗传改善至关重要。燕麦(Avena sativa L.)是世界上的主要草饲料之一,但尚未对TCP基因的全基因组分析及其在低氮应激中的作用。这项研究使用生物信息学技术确定了燕麦TCP基因家族成员。它分析了他们的系统发育,基因结构分析和表达模式。结果表明,ASTCP基因家族包括49个成员,大多数ASTCP编码的蛋白是中性或酸性蛋白。系统发育树将ASTCP基因家族成员分类为三个亚家族,并且每个亚科具有不同的保守结构域和功能。此外,在ASTCP基因的启动子中检测到了多个与非生物应激,光反应和激素反应有关的启动子。从燕麦鉴定出的49个ASTCP基因在18个燕麦染色体上分布不均。这项研究为其他OAT属中TCP基因家族的未来深入研究提供了重要的基础,并揭示了改善基因利用率的新研究思想。实时定量聚合酶链反应(QRT-PCR)的结果表明,在低氮应激下,ASTCP基因在各种组织中具有不同的表达水平,这表明这些基因(例如ASTCP01,ASTCP03,ASTCP2222222222222222,和ASTCP38)在增长和发展中具有多个生长。总而言之,这项研究分析了ASTCP基因家族及其在全基因组水平低氮应激中的潜在功能,这为进一步分析燕麦中ASTCP基因的功能奠定了基础,并为探索燕麦中出色胁迫耐受性基因的理论基础提供了理论基础。
钛(Ti)植入物以其机械可靠性和化学稳定性而闻名,这对于肉体再生至关重要。已经开发了各种形状控制和表面修饰技术,以增强生物学活性。尽管胶原蛋白/磷灰石骨微结构对机械功能,抗菌特性以及生物相容性,精确和多功能模式控制对重生微结构至关重要。在这里,我们开发了一种新型的成骨裁缝条纹 - 微图案MPC-TI底物,可诱导对定向骨基质组织的遗传水平控制。这种生物材料是通过微观图2-甲基丙酰氧甲基乙基磷酸胆碱(MPC)聚合物通过选择性光反应到钛(Ti)表面上产生的。Stripe-Micropatened MPC-TI底物建立了一个独特的细胞粘附界面,可通过肌动蛋白细胞骨架比对来稳健地诱导成骨细胞细胞骨架对准,并促进形成骨骼模拟骨骼的骨骼与方向的胶原蛋白/apatite consue。更多,我们的研究表明,通过激活Wnt/β -catenin信号传导途径,促进了这种骨比对过程,该途径是由强烈的细胞比对引导引起的核变形引起的。这种创新的材料对于个性化的下一代医疗设备至关重要,提供了高可定制性和骨微结构的积极恢复。调节细胞粘附和细胞骨架比对的创新方法激活了Wnt/β -catenin信号传导途径,对于骨分化和方向至关重要。的意义陈述:这项研究表明了一种新型的成骨剪裁条纹 - 微调Micropatened MPC-TI底物,该基材基于遗传机制诱导成骨细胞比对和骨基质方向。通过采用光反应性MPC聚合物,我们成功地微孔钛表面,创建了一种生物材料,从而刺激单向成骨细胞排列,并增强了天然骨模拟于天然骨模拟各向异性微观结构的形成。这项研究提出了第一种生物材料,该生物材料人为地诱导机械上各向异性骨组织的构建,并有望通过增强骨骼不同的诱导和方向来促进功能性骨骼再生 - 靶向骨组织的数量和质量。
cu 2 o光(光电极)可以产生很高的太阳能到水(STH)效率(≈18%),[6-8],但它也容易在水溶液中的光接种,显示出非常稳定的稳定性。[9,10]这是因为Cu 2 O的氧化还原电位位于Cu 2 O的带隙内,从而使其可将其减少到Cu或氧化为CUO中,这极大地限制了Cu 2 O光电座在光电子体(PoperelectRocata-Lytic(Pec)(PEC)场中的应用。[11–15]因此,已经大量研究用于改善催化过程中Cu 2 O光阴极的稳定性。例如,可以通过原子层沉积(ALD)技术在其表面上添加缓冲层(ZnO,Ca 2 O 3)和在其表面上的protective层(tiO 2 O 3),可以通过原子层(ALD)技术在电解质溶液中的光(TiO 2 O 3)和弹性层(tio 2)进行有效缓解。[16,17]但是,由于液体过程和昂贵的设备,此方法不适合大规模生产。因此,通过结合G -C 3 N 4,[18-20] NIS,[21] FeOOH,[22,23] Cu 2 S,[24-26]和MOFS [24-26]和MOFS [27,28],通过多样化的方法(例如,替代涂料,替代涂料)组合来形成连接,还可以提高复合Cu 2 O 2 O光阴极的稳定性。为了进一步提高Cu 2 O光电的光稳定性,需要通过可重复的过程和技术开发一些更有效的保护层材料。据报道,切断光电剥离和电解质溶液之间的反应可以有效抵抗其光腐蚀。此外,明显提高了Cu 2 O[29–31]铜苯乙酰基(pHCCCA)是一种新报道的金属有机聚合物半导体,具有出色的照片/热稳定性,可见光的光反应和高电子孔孔对分离效率。[32–36]最重要的是,它还显示出强的疏水性,静态水接触角为131.2°。[37]通过报道的光热方法,[16]高质量的pH c c c c cu Cu保护层被成功地自组装在Cu 2 O 2 O光(图1)的表面上(图1),有效地抑制了其光腐蚀,通过与电解液和O 2中的O 2分开其光腐蚀。在长期PEC实验后,通过构造的pH phcc cu/cu/cu 2 o光电座获得的稳定光电流密度显示出其出色的光稳定性,这也由稳定的晶体结构,形态和cu的价位证明。
在聚合物中,在单个水平和链之间的链条折叠和聚集之间的竞争可以确定此类材料的机械,热和导电性能。了解折叠和聚集的相互作用为开发和发现具有量身定制性能和功能的聚合物材料提供了重要的机会。对于常规共价聚合物的非共价对应物也是如此,即,超分子聚合物(SPS)。sps有望用作新型刺激响应性聚合物材料的实际应用。大多数SPS具有单调的一维线性结构,该结构倾向于引起链链聚集,但是很少有SPS的报道可以通过主链折叠形成各种高阶结构。既展示了内部折叠和链链聚合的SP的开发,将为创建新型SP材料提供新的指南,其特性可以由高阶结构控制。最近发表在2024年7月25日在美国化学学会杂志上发表的一项研究报告了一种新的折叠SP,该SP自发进行链链聚集并转化为结晶骨料。借助原子力显微镜(AFM),研究小组证明了展开与聚集之间的关系。这项研究是由Chiba University的Shiki Yagai教授领导的,他是Chiba University科学与工程研究生院的博士课程学生Kenta Tamaki,是第一作者。 “最初,我们发现了一种单体结构,该结构以螺旋形形状聚合。这次,我们部分改变了驱动单体聚合以研究单体聚合物关系的单位结构。令我们惊讶的是,我们观察到了一种现象,螺旋自发地展开,而不同的链条捆在一起。然后,我们合并了一个可相关的分子,以便通过光线通过“任意时机”出现这种“自发”现象,这为我们的研究提供了背景,” Yagai教授说,这项研究背后的灵感。为设计新系统,该团队选择了可扭曲的二苯基和光反应偶氮苯单元作为核心,将其自组装到所需的SPS中。最初以折叠状态形成的SP慢慢地以内部分子顺序进行重排超过半天,并汇总到结晶状态。将偶氮苯单元纳入SPS导致了光诱导的展开,这通过松动折叠环之间的内部稳定来显着加速了这一过程。研究人员观察到,当将折叠的SP溶液保持在20 O C下几天时,聚合物会自发进行结构过渡并沉淀。使用AFM可视化沉淀物时,他们观察到了独特的中间状态,在通往统一的直纤维结构的途中,似乎是弯曲链的结合。这个有趣的图像使研究人员想起了蛋白质折叠不折叠的生物系统中经常观察到的链链聚集,从而导致淀粉样蛋白纤维形成。此外,该团队揭示了这种结构转型背后的原因。这包括由于双苯基单元的构象变化而导致的分子内顺序
DOI:http://dx.medra.org/10.17374/targets.2020.23.92 Ana G. Neo 生物有机化学和膜生物物理实验室 (LOBO),有机和无机化学系,埃斯特雷马杜拉大学,10003 卡塞雷斯,西班牙(电子邮件:aneo@unex.es) 摘要。光化学环化允许获得多种类型的杂环和成分,成为合成有机化学的有力工具。在这种类型的过程中,光诱导周环闭合反应生成中间体,该中间体以不同的方式演变成稳定的最终产物。光环化发生在非常温和和简单的反应条件下,具有很好的原子经济性,并且对环境非常尊重。目录 1. 简介 2. 氧化条件下的光化学环化 2.1. 用于合成具有生物特性的分子 2.2。新材料设计中的应用 3. 碱存在下的光化学环化 3.1. 用于合成具有生物特性的分子 3.2. 新材料设计中的应用 4. 环化/脱卤及相关 5. 杂项 6. 结论 致谢 参考文献 1. 简介 约瑟夫·普里斯特利 (Joseph Priestley, 1733-1804) 对硝酸中阳光效应的研究和对光合作用原理的发现被认为是光化学的开端。在有机化学领域,光化学时代是由坎尼扎罗 (Cannizzaro) 对光对山托宁的影响的研究开创的,而 Giacomo Ciamician 和 Paul Silber 基本上是对光对有机化合物影响的完整和创新研究。在这些先驱之后,其他研究人员,如 Emanuele Paternò、Otto Schenck、Julius Schmidt 或 Alexander Schönberg,也将注意力集中在研究光对分子反应性的影响上。 1,2 早期的光化学研究主要研究太阳光对分子反应性的作用,因为当时人们还不知道光的性质及其在原子水平上的影响。目前,人们了解到,分子吸收紫外-可见光会将电子从基态转移到激发态,随后这些电子重新分布,从而形成在热条件下无法获得的产品。此外,光反应还具有其他吸引人的特性,如原子效率高、环境友好、功能组和杂原子耐受性范围广、反应非常简单,而且通常成本低廉。3-6 所有这些特性使得光化学反应在有机化学各个领域的各种分子合成中发挥着重要作用。7-13 在众多类型的光化学反应中,光诱导的周环闭合反应,尤其是6π-光环化反应是其中最重要的一种。这种类型的反应允许在单一且绿色的工艺中构建芳香族和杂芳族多环化合物。14 通常,6π-光环化反应分为氧化、消除和重排。本综述按照以下分类进行组织:首先,它们将展示一些氧化条件下的光环化例子以及您在合成具有生物活性的化合物和材料中的应用。第二部分是关于碱性介质中的光环化和
⋄Artem Boichuk,tau(正在进行)。⋄Matiaspaatelainen,tau(正在进行)。⋄Henning Meteling,Tau(正在进行)。samivesamäki,tau(正在进行)。⋄tau(正在进行)的Roshan Nsare。⋄Yasaman Nemati,Tau(正在进行)。⋄Zixuan Deng,Tau(正在进行)。 ⋄玛丽·伊索米基(Mariisomäki),tau(正在进行)。 ⋄tau(正在进行)的Antti Siiskonen。 ⋄亚历克斯·伯丁(Alex Berdin),tau(毕业生 2024年4月)。 论文标题:“偶氮纤维中的全息记录”。 ⋄金·昆兹(Kim Kuntze),tau(毕业生 2023年8月)。 论文标题:“红光照相的策略”。 suvi holmstedt,tau(毕业生 2021年9月)。 论文标题:“基于生物量的com磅转换为添加值化学物质”。 ⋄Markuslahikainen,tau(毕业生 2021年10月)。 论文标题:“适用于软机器人的光响应聚合物的高级控制策略”。 ⋄jagadish salunke,tau(grad。 2021年1月)。 论文标题:“低成本势噻嗪和基于吡啶的孔孔传输材料,用于卤化物钙钛矿太阳能电池”。 ⋄ocies wani,tau(毕业生 2019年5月)。 论文标题:“来自液晶网络的生物启发的轻机器人”。 ⋄MikkoPoutanen,Aalto(毕业生 2018年9月)。 论文标题:“功能软材料中光和自组装的相互作用 - 从照片对照到光子结构”。 ⋄Mattivirkki,tut(毕业生 2017年10月)。 论文标题:“光电批准光学非线性的超分子材料”。 2013年6月)。⋄Zixuan Deng,Tau(正在进行)。⋄玛丽·伊索米基(Mariisomäki),tau(正在进行)。⋄tau(正在进行)的Antti Siiskonen。⋄亚历克斯·伯丁(Alex Berdin),tau(毕业生2024年4月)。论文标题:“偶氮纤维中的全息记录”。⋄金·昆兹(Kim Kuntze),tau(毕业生2023年8月)。论文标题:“红光照相的策略”。suvi holmstedt,tau(毕业生2021年9月)。论文标题:“基于生物量的com磅转换为添加值化学物质”。⋄Markuslahikainen,tau(毕业生2021年10月)。论文标题:“适用于软机器人的光响应聚合物的高级控制策略”。⋄jagadish salunke,tau(grad。2021年1月)。论文标题:“低成本势噻嗪和基于吡啶的孔孔传输材料,用于卤化物钙钛矿太阳能电池”。⋄ocies wani,tau(毕业生2019年5月)。论文标题:“来自液晶网络的生物启发的轻机器人”。⋄MikkoPoutanen,Aalto(毕业生2018年9月)。论文标题:“功能软材料中光和自组装的相互作用 - 从照片对照到光子结构”。⋄Mattivirkki,tut(毕业生2017年10月)。论文标题:“光电批准光学非线性的超分子材料”。2013年6月)。⋄詹妮·科斯克拉(Jenni Koskela),阿尔托(Grad。2015年1月)。论文标题:“含有偶氮苯的材料中的轻型动作:从超分子设计到新应用”。⋄jaana vapaavuori,aalto(Grad。论文标题:“通过超分子功能化的有效光反应偶氮苯材料的设计”。