Pustimbara博士于2019年开始研究5-氨基甲酸(ALA),同时继续在日本进行研究。 ALA是一种天然存在的氨基酸,通常在体内产生,但也可以在补充剂和治疗中外源使用。目前,它通常用于用于医疗目的的癌症的光动力诊断,但ALA具有在其他疾病的药物治疗中的巨大潜力。 Pustimbara博士开始了他的研究,该研究对在干细胞培养物中使用ALA的试验进行了一种称为线粒体脑病,乳酸性酸中毒和中风样发作(称为Melas综合征)的罕见疾病。迄今为止,尚无对疾病产生重大影响的治疗方法,Pustimbara博士发现,使用IPS细胞系并将ALA和SFC一起使用可以改善与线粒体功能相关的蛋白质的表达。此外,我们对脂肪细胞祖细胞的分化过程进行了研究,发现使用ALA和SFC大大减少了在3T3-L1分化过程结束时产生的脂肪细胞量。 Pustimbara博士在他的博士研究中使用了ALA和Hemin在癌细胞中使用的不同组合。 Hemin是一种含有氯的含铁的卟啉,由血液中常见的血红素组形成。使用胃癌细胞的研究表明,ALA和HEMIN可以通过增加细胞内PPIX积累和活性氧的产生来降低癌细胞的存活高达18%(Pustimbara等,2024)。除了第一个发现这一点的研究外,我们发现ALA和HEMIN的结合可能是在癌症疾病中使用光动力疗法的另一种选择。
1)F。Kawano,H。Suzuki,A。Furuya,M。Sato:Nat。社区。,6,6256(2015)。2)Y. Nihongaki,F。Kawano,T。Nakajima,M。Sato:Nat。生物技术。,33,755(2015)。3)Y. Nihongaki,T。Otabe,Y。Ueda,M。Sato:Nat。化学。生物。,15,882(2019)。4)方法,14,963(2017)。5)Y. Nihongaki,S。Yamamoto,F。Kawano,H。Suzuki,M。Sato:Chem生物。,22,169(2015)。6)生物技术。,40,1672(2022)。7)F。Kawano,R。Okazaki,M。Yazawa,M。Sato:Nat。化学。生物。,12,1059(2016)。8)natl。学院。SCI。 U.S.A.,116,11587(2019)。 9)K。Morikawa,K。Furuhashi,C。DeSena-Tomas,A。L。Garcia-Garcia,R。Bekdash,A。D。Klein,N。Gallerani,H。E。E. Yamamoto,S.-H。 E. Park,G。S。Collins,F。Kawano,M。Sato,C.-S。 Lin,K。L. Targoff,E。Au,M。Salling,M。Yazawa:Nat。 社区。 ,11,2141(2020)。SCI。U.S.A.,116,11587(2019)。 9)K。Morikawa,K。Furuhashi,C。DeSena-Tomas,A。L。Garcia-Garcia,R。Bekdash,A。D。Klein,N。Gallerani,H。E。E. Yamamoto,S.-H。 E. Park,G。S。Collins,F。Kawano,M。Sato,C.-S。 Lin,K。L. Targoff,E。Au,M。Salling,M。Yazawa:Nat。 社区。 ,11,2141(2020)。U.S.A.,116,11587(2019)。9)K。Morikawa,K。Furuhashi,C。DeSena-Tomas,A。L。Garcia-Garcia,R。Bekdash,A。D。Klein,N。Gallerani,H。E。E. Yamamoto,S.-H。 E. Park,G。S。Collins,F。Kawano,M。Sato,C.-S。 Lin,K。L. Targoff,E。Au,M。Salling,M。Yazawa:Nat。社区。,11,2141(2020)。
出版者:公益财团法人激光技术研究所 主编:谷口诚二 邮编:550-0004 大阪市西区靱本町 1-8-4 大阪科学技术中心大楼 4 楼 电话:(06) 6443-6311 传真:(06) 6443-6313 http://www.ilt.or.jp
1 天体物理学小组,基尔大学,基尔,斯塔德郡 ST5 5BG,英国 2 马克斯普朗克研究所,Justus-von-Liebig-Weg 3,D-37077 哥廷根,德国 3 尼古拉斯·哥白尼天文中心,波兰科学院,ul。Rabia´nska 8, PL-87-100 Toru´n, 波兰 4 鲁汶天主教大学天文学院,Celestijnenlaan 200D,B-3001 Leuven, 比利时 5 圣地亚哥州立大学天文系,5500 Campanile Drive,San Diego,CA 92182-1221,美国 6 维拉诺瓦大学天体物理和行星科学系,800 Lancaster Avenue,Villanova,PA 19085,美国 7 天体物理中心,哈佛和史密森尼,60 Garden Street,Cambridge,MA 02138,美国 8 伯明翰大学物理与天文学院,伯明翰 B15 2TT,英国 9 奥胡斯大学物理与天文系恒星天体物理中心(SAC),Ny Munkegade 120, DK-8000 奥尔胡斯 C,丹麦
对地球轨道上的空间物体进行表征是一项重要任务,特别是随着太空交通的增加和太空交通管理的出现。正确理解物体的形状、大小和姿态对于预测其未来行为至关重要。光变曲线越来越多地被用于表征物体,方法从简单的回归分析到复杂的人工智能解决方案。本文介绍和演示的方法是一种基于卷积神经网络的机器学习算法,能够表征物体的几何形状、姿态和材料等物体参数。该方法旨在成为一种灵活的分类方法,可以扩展到所有轨道和任何类型的物体,包括碎片。本文介绍了正在进行的研究的中间结果,展示了多分类和多分支分类模型的使用。结果表明,该方法可以从单个完整的夜间光变曲线中成功地以超过 80% 的准确率对地球同步轨道上物体的形状、大小、姿态和主要材料进行分类。
●涵盖了多种用于光学应用的晶体:激光和非线性光学晶体,磁光晶体,闪烁体/剂量计晶体,宽带隙半导体,压电和铁电晶体等等等等。●我们当前的主要研究目标是:用于高亮度照明设备的单晶磷光器。用于激光机械的光学隔离器的法拉迪旋转器。用于高温使用的压电晶体,例如燃烧压力传感器。氧化包胶作为新型宽带隙半导体。用于IR光学应用的Chalcogenide●积极促进与大学,国立研究所和行业的合作,并积极追求国际合作,以促进新的观点和原始思想。
HAMON FZCO,研发摘要这项工作提出了一个广义梯度估计器,该梯度估计器优化了涉及已知或黑框函数的期望,用于离散和连续的随机变量。我们合成并扩展了用于构建梯度估计器的标准方法,提供了一个框架,该框架会产生最小的计算开销。我们提出的方法证明了各种自动编码器的有效性,并引入了对加强学习,适应离散和连续的动作设置的直接扩展。实验结果揭示了提高的训练性能和样本效率,突出了我们在各个领域中估计器的实用性。未来的应用程序包括具有复杂注意力机制的培训模型,具有非差异可能性的连续远值模型,以及将我们的方法与现有方差减少技术和优化方法相结合。关键字:梯度估计,变异自动编码器(VAE),增强学习,重新聚集技巧,控制变体,策略梯度方法1。简介基于坡度的增强支持AI中的推进和支持学习。反向传播[16,19,12]的数字确定了可区分目标的斜率,而重新聚集技巧[24,4,4,13]赋予了概率模型的实际改进。尽管如此,许多目标需要斜率进行反向传播,例如,支持学习的黑盒能力[18]或离散抽样的不连续性[7,2]。[22]通过持续的放松提出了一个有思想的,低裂开的评估者。2。正在进行的技术通过角度评估者(包括艺人专家方法[21]和持续放松[7,2]来解决这一问题。我们通过学习基于大脑网络的控制变量来扩大这一点,即使没有一致的放松,也可以产生较低的,公平的评估材料,例如在支持学习或黑盒改进中。背景2.1。倾斜度估计器简化边界θ扩大支持学习中显示的假设(预期奖励Eτ〜π [r])和休眠变量模型(增强p(x |θ)= e p(z |θ)[p(x | z)])。我们增强L(θ)= E P(B |θ)[F(B)]。(1)
[删除]代表[删除],并经我们同意,可在认为适当的情况下,于[删除]递交申请截止日期当天早上前的任何时间,减少本文件所载的[删除]数目及╱或指示性[删除]金额(即[删除]港元减至[删除]港元)。在此情况下,有关[删除]数目及╱或指示性[删除]金额减少的通知将于作出有关减少的决定后尽快刊登于[南华早报](英文版)及[香港经济日报](中文版),但无论如何不得迟于[删除]递交申请截止日期当天早上。该等通知亦将于本公司网站www.rimag.com.cn及香港联交所网站www.hkexnews.hk上刊登。进一步的详细信息请参阅本文件的“[删除]的结构”和“如何申请[删除]”。