[4] Gibson B, Wilson DJ, Feil E 等人。野生环境中细菌倍增时间的分布。Proc Biol Sci, 2018, 285: 20180789 [5] Yu J, Liberton M, Cliften PF 等人。Synechococcus elongatus UTEX 2973,一种利用光和二氧化碳进行生物合成的快速生长蓝藻底盘。Sci Rep, 2015, 5: 8132 [6] Paddon CJ, Westfall PJ, Pitera DJ 等人。强效抗疟药青蒿素的高水平半合成生产。Nature, 2013, 496: 528-32 [7] Lin MT, Occhialini A, Andralojc PJ 等人。一种更快的 Rubisco,具有提高作物光合作用的潜力。 Nature, 2014, 513: 547-50 [8] Bailey-Serres J, Parker JE, Ainsworth EA 等. 提高作物产量的遗传策略。Nature, 2019, 575: 109-18 [9] Gleizer S, Ben-Nissan R, Bar-On YM 等. 转化大肠杆菌从二氧化碳生成所有生物质碳。Cell, 2019, 179: 1255-63 [10] Chen FYH, Jung HW, Tsuei CY 等. 将大肠杆菌转化为仅靠甲醇生长的合成甲基营养菌。Cell, 2020, 182: 933-46 [11] Kaneko T, Sato S, Kotani H 等.单细胞蓝藻Synechocystis sp. 菌株 PCC6803 的基因组序列分析。II. 整个基因组的序列测定和潜在蛋白质编码区的分配。DNA Res,1996,3:109 [12] van Alphen P、Najafabadi HA、dos Santos FB 等人。通过确定其培养的局限性来提高 Synechocystis sp. PCC 6803 的光自养生长率。Biotechnol J,2018,13:e1700764 [13] Sheng J、Kim HW、Badalamenti JP 等人。温度变化对台式光生物反应器中 Synechocystis sp PCC6803 的生长率和脂质特性的影响。 Bioresour Technol, 2011, 102: 11218-25 [14] 张胜山, 郑胜南, 孙建华, 等. 通过便捷引入 AtpA-C252F 突变快速提高蓝藻细胞工厂的高光和高温耐受性。Front Microbiol, 2021, 12: 647164 [15] Ungerer J, Lin PC, Chen HY, 等. 调整光系统化学计量和电子转移蛋白是蓝藻 Synechococcus elongatus UTEX 2973 快速生长的关键。Mbio, 2018, 9: e02327-17 [16] Wlodarczyk A, Selao TT, Norling B, 等. 新发现的 Synechococcus sp. PCC 11901 是一种可高产生物量的强健蓝藻菌株。Commun Biol, 2020, 3: 215 [17] Jaiswal D, Sengupta A, Sohoni S 等人。从印度分离的一种强健、快速生长且可自然转化的蓝藻 Synechococcus elongatus PCC 11801 的基因组特征和生化特性。Sci Rep, 2018, 8: 16632 [18] Jaiswal D, Sengupta A, Sengupta S 等人。一种新型蓝藻 Synechococcus elongatus PCC 11802 与其邻居 PCC 11801 相比具有不同的基因组和代谢组学特征。Sci Rep, 2020, 10:
葱代表着印度尼西亚家庭需求的关键商品;但是,他们的产量未能满足不断升级的需求。因此,提高生产的技术干预措施必须进行,其中一个有希望的机会是应用光合细菌(PSB)。可以通过直接的土壤输注或叶面喷涂来应用PSB。本研究旨在阐明各种PSB应用技术对局部Bantul葱品种的生长和产量的差异影响。从2022年9月至1222年12月进行。该研究采用完整的随机块设计(RCBD),并结合了一个施肥因子和四个层次:缺乏肥料,NPK肥料16:16:16 + psb通过浇注,NPK肥料,NPK肥料16:16:16:16:16:16:16:16 + PSB通过喷雾和NPK肥料16:16:16:16:16:16。每种治疗都进行了十种复制。在数据采集之后,采用了方差分析,然后以5%的错误率进行了诚实的显着差异测试(HSD Tukey)。结果表明,PSB的提供导致了根长度,叶绿素含量,硝酸盐还原酶活性,根和芽的新鲜和干重,每个团块的鳞茎计数,每个团块的新鲜和干重灯泡以及整体生产力。最佳的PSB应用技术被确定为涌入增长的媒体,导致葱生产率的31.28%提高了31.28%。
Porto 7抽象的生物聚合物具有巨大的适用性,除了与化石能源相比,还具有可生物降解的来源和相对较短的寿命。其中一些生物聚合物是多羟基烷酸酯(PHAS),这是一类具有形成塑料膜的聚合物,类似于石化塑料。几项研究表明,微藻/蓝细菌是光合微生物的类型,可用于以较低的成本获取PHA,因为它们对生长的营养需求最少,并且自然是光自养生的,这意味着它们使用光和CO 2作为主要能源。此外,微藻具有高生产率的潜力,对环境条件的变化具有耐受性,并且可以在不适合农业的地区种植。这些光合微生物产生的这些PHA塑料膜可以是构建具有抗菌特性的功能性膜的替代方法,该膜与精油(著名的活性包装,包装行业的未来)一起融合在一起。这项工作展示了这些生物聚合物在包装行业中的生产,提取,生物合成和应用观点,例如与精油合并的薄膜。关键词:微藻,蓝细菌,生物塑料,生物聚合物,多羟基烷烃,精油。
摘要:光合作用是地球上最大的质量和能量转换过程,它是几乎所有生物学活动的物质基础。与理论值相比,光合作用期间将吸收的光能转化为能量物质的效率非常低。基于光合作用的重要性,本文总结了从各个角度提高光合作用效率的最新进展。The main way to improve photosynthetic efficiency is to optimize the light reactions, including increasing light absorption and conversion, accelerating the recovery of non-photochemical quenching, modifying enzymes in the Calvin cycle, introducing carbon concentration mechanisms into C 3 plants, rebuilding the photorespiration pathway, de novo synthesis, and changing stomatal conductance.这些事态发展表明,光合作用有明显的改善空间,为提高农作物产量和减轻气候条件变化提供了支持。
引入的技术在追求碳中性社会中分开,捕获和重复使用CO 2的排放越来越重要。正在研究各种碳捕获的方法,其中一种使用了诸如光合作用反应之类的生物处理方法。这种方法涉及使用光合微生物吸收CO 2并合成有机物质和其他有用材料,现在的研究旨在提高效率并提高这些类型的过程的规模。Shimadzu TOC-L总有机碳分析仪提供了一种简单而快速的方法来测量TOC,以评估CO 2捕获中生长的微生物量。由于可以通过测量无机碳(IC)来量化溶解在培养基中的CO 2的量,因此IC也可以用于确定微生物吸收的CO 2的量。这些评估可用于帮助筛选和繁殖CO 2固定微生物,并优化培养和生长条件。本文描述了在包含紫色光合细菌的样品中测量TOC的示例,并评估了样品中的微生物量。
© 2023 Wiley‑VCH GmbH。保留所有权利。这是以下文章的同行评审版本:Liu, S., Yang, H., Ho, M. Y. & Xing, B. (2023)。材料修饰光合微生物的最新进展及其在生物医学应用中的方面。先进光学材料,2203038,最终版本已发布于 https://dx.doi.org/10.1002/adom.202203038。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。
光合作用是由太阳的单个光子1-3引发的,作为弱光源,在叶绿素吸收带1中,每秒最多每秒几十个光子每秒传递几十个光子。在过去的40年中,在过去的40年中,许多实验和理论工作探索了在光合作用中吸收光合作用的事件,从而吸收了强烈的超短激光脉冲2-15。在这里,我们使用单个光子在环境条件下激发了紫色细菌的紫obacter sphaeroides的轻度收获2(LH2)复合物,分别包含9和18个细菌氯植物分子的B800和B850环。B800环的激发在大约0.7)ps中导致电子能量转移到B850环,然后在约100-FS的时间尺度上快速B850至B850 Energy Transfers在850–875时(参考)NM(参考)。16–19)。使用宣传的单光子源20,21以及一致计数,我们建立了B800激发和B850 Fuoresence发射的时间相关函数,并证明这两个事件都涉及单个光子。我们还表明,每个检测到的插入光子光子的概率分布支持这样一种观点,即吸收后单个光子可以驱动随后的能量传递和实现发射,因此,通过扩展,光合作用的主要电荷分离。一个分析随机模型和蒙特卡洛数值模型捕获了数据,进一步缔结了单个光子的吸收与自然光收获复合物中单个光子的发射相关。
光合微生物是微观生命形式,例如藻类,蓝细菌和使用轻能量产生食物的硅藻。他们有可能通过为人类消费提供蛋白质和其他营养素的替代来源来彻底改变食品工业。在这篇博客文章中,我们将讨论光合微生物在食品应用中的越来越多的作用及其在创造可持续未来的重要性。光合微生物能够生产可用作食品成分的高质量蛋白质。这些蛋白质高度消化,并且含有对人营养很重要的必需氨基酸。此外,光合微生物可以产生omega-3脂肪酸,这可以帮助降低人类的胆固醇水平。光合微生物的使用也可以通过提供饮食蛋白的替代来源来减少我们对传统动物蛋白(例如牛肉和家禽)的依赖。此外,这些生物可以在不适合作物生产或畜牧业的土地上生长。这意味着他们可以提供其他营养来源,而无需其他资源或土地。此外,光合微生物所需的水比传统的农业实践所需的水更少,并且在大气中散发出更少的温室气体。
图 2 用于对光合微生物进行遗传工程改造的常见遗传转化技术示意图。 (A) 对于绿藻 (衣藻) 和真气藻 (微绿球藻):电穿孔和基因枪轰击可用于衣藻和微绿球藻的叶绿体靶向转化,而电穿孔或用玻璃珠涡旋可用于修饰衣藻的核基因组。细菌接合或农杆菌介导的转移也可用于将 DNA 引入这些细胞。 (B) 对于蓝藻:自然转化或接合可用于转移 DNA 以整合到染色体中或作为复制质粒。质粒也可以通过电穿孔转移。 (C) 对于硅藻:电穿孔和细菌接合是可用于将 DNA 引入硅藻的技术的例子。也可以使用农杆菌介导的转移或基因枪轰击
抽象的空间环境对于重力(重力修饰,水分布),辐射(突变增强子),光谱状态和温度不是最佳的植物生长和存活而言是极端的。光合微生物是一种可预见的解决方案,用于支持封闭环境中的植物发育,生长和胁迫耐受性,例如为空间定植设计的植物。的确,光合微生物被称为二级代谢产物(外多糖,吲哚生物碱,肥料),能够影响植物刺激。研究其能力,应用方法和太空农业的最佳菌株可能会导致开发一种可持续且有效的食品生产方法。此外,由于这些微生物也可以用于生产氧气和回收废物,从而增加了对封闭环系统的兴趣。在这篇评论中,我们概述了有关现有生物刺激物,其影响和应用的当前知识状态,以及光合微生物在封闭环境中生命的潜力。