这项研究着重于[2.2] Paracyclane-1,9-二烯的合成和评估,以使用环环分解聚合(ROMP)产生可溶性聚(P-苯基乙烯)(PPV)衍生物均聚物。所得的均聚物显示出狭窄的多分散指数(PDI)为1.22,表明对聚合的精确控制。PPV衍生物在各种有机溶剂中表现出极好的溶解度。的光物理特性,包括光吸收和荧光发射光谱,以评估光电设备中的实用性。薄膜的光条间隙范围为2.21至2.25 eV,对于解决方案,溶液的2.07至2.19 eV,而由环状伏安法确定的电化学带隙为2.37 eV。这些杂物在各种溶剂和薄膜中表现出有希望的荧光活性,这表明在有机灯发光二极管(OLEDS)和相关的光电设备中的潜在应用。
[(DNA)2 - AG 16 Cl 2] Q(q = 10)(图1)。10我们的先前理论工作提供了氯化物配体的证据,并首先了解了聚类的电子结构和光吸收10的特征,以及有关如何在DFT计算中处理这些系统在溶剂溶液中如何处理这些系统的基准,相对于溶剂效应,交换量的水平,交换相互作用的水平以及溶液中的内在电荷。11,我们在参考文献中发现。11,簇电荷对最高占用和最低的未占用分子轨道(HOMO-LUMO GAP)以及计算的UV-VIS吸收光谱之间的能量差距明显影响,然后可以直接与早期发布的实验数据进行比较。一个明确的结论是,电荷Q = 10 E给出了与实验数据和电子基态最大的Homo -Lumo间隙的绝对最佳匹配,反映了
具有适当带隙的半导体粒子由于其价带已填满而导带为空,因此光催化效率最高。11二氧化钛 (TiO 2 ) 是光降解水中有机污染物最有效的半导体光催化剂,由于其无毒、化学惰性、光稳定性高以及生产成本低,在废水净化中显示出良好的应用前景。12–14 然而,TiO 2 的带隙能量大 (锐钛矿为 3.2 eV,金红石为 3.0 eV) ,不能吸收可见光,导致光生电子-空穴对快速复合,从而导致光催化效率低下。7因此,研究人员目前正致力于开发有效的方法来克服与电子-空穴对复合相关的问题,特别是在不使用强还原剂的情况下。 15 其中一条途径是合成具有不同特性的新型半导体异质结构体系,与单个元件相比,它们可以促进电荷分离、抑制电荷复合、拓宽光吸收的光谱范围。16,17
摘要:电子系统与晶格振动的耦合及其时间有关的控制和检测提供了对半导体非平衡物理学的独特见解。在这里,我们研究了使用宽带光泵 - 探针显微镜封装的半导体单层2 h -mote 2的超快瞬态响应。低于40 fs泵脉冲在A'和B'激子共振的光谱区域中极度强烈且长寿的连贯振荡,这是由于最大瞬态信号的约20%,这是由于平面外A 1G语音的位移激发。从头算计算揭示了由平面外拉伸和晶体晶格的压缩诱导的单层MOTE 2的光吸收的重排,与A 1G型振动一致。我们的结果强调了单层TMD对小结构修饰的光学特性的极端敏感性及其用光操纵。关键字:连贯的声子,激子,超快光谱,过渡金属二分法,二维材料,单层,Mote 2 E
PBS量子点(PBS-QD)是新一代LED中最好的候选者之一。当PBS-QD暴露于光谱时,Valence带(VB)中的电子会激发到传导带(CB)。激发的电子然后从CB返回到VB,并通过发光释放额外的能量。电子返回VB使得可以重复光吸收发射圆。如果PBS-QD的尺寸小于Bohr Magneton Radius(PMR),则电子的概率返回到VB。这导致了发光二极管(LED)中名为量子点闪烁(QDB)的现象,这是不可取的。在这项研究中,已经提出了一种新方法,在该方法中,添加具有适当带边缘的半导体壳的PBS-QD的金属底物可以提高QD领导的PBS-QDS效率并克服QDB问题。©2024 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。关键字PBS-QDS眨眼保护壳LED PB CDSE
用电力(化学和生物化学)更改颜色:正在为从生物电子学到电致(变色)显示的电子应用开发导电聚合物。教师在概念上引入了聚合物,并讨论了如何设计其化学结构以创建新材料特性,包括电荷传导。受到导致2000年诺贝尔化学奖的指导聚合物的启发,学生使用D电池进行电化学的电导聚合物膜合成,从而创建了电色素显示。此后,学生建立了一个简单的2型电池电路,以在聚合物膜上施加不同的电势,从而导致氧化还原化学反应,导致显示器的几种颜色(无色,绿色和蓝色)。讨论了颜色的光学起源以及光吸收对聚合物化学结构的差异敏感。我们以吸光度光谱实验的演示结束了该模块,在该演示中,随着膜的颜色在应用不同的电势时变化,聚合物的吸光度光谱会实时演变。
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
染料敏化太阳能电池 (DSSC) 是一种有前途的光伏 (PV) 技术,适用于需要高美学特征和能量生产的应用,例如建筑一体化光伏 (BIPV)。在此背景下,由于通过分子工程开发了新的敏化剂,DSSC 具有波长选择性。染料研究的悠久历史为该技术提供了不同的颜色以达到全色光吸收。然而,近 45% 的阳光辐射位于近红外 (NIR) 区域,而人类视锥细胞对此区域不敏感。本综述为读者提供了有关如何选择性地利用该区域以基于 DSSC 技术开发无色透明 PV 的关键信息。除了选择性 NIR 吸收剂外,三联光阳极、对电极和氧化还原介质共同有助于实现高美学特征。本文结合 BIPV 应用讨论了所有组件的详细信息、相互作用以及实现无色透明 NIR-DSSC 的技术限制。
化石燃料的消耗和日益紧迫的环境问题。[1,2] 人们投入了大量研究精力来开发各种类型的清洁能源转换和存储技术;这些密集的研究活动导致了太阳能电池、风力涡轮机、可充电电池 (RB) 和超级电容器的开发和商业化取得了巨大进展。[3–8] 金属卤化物钙钛矿太阳能电池 (PSC) 的快速发展代表了可再生能源转换领域最新和最令人兴奋的发展的一个极好例子。 [9–15] 由于其可调的带隙、[16] 高载流子迁移率、[17–19] 大的光吸收系数、[20] 和低的形成能,[21] 进展能够将光电转换效率 (PCE) 从 2009 年的 3.8% 迅速提高到 2019 年的 25.2%。[9,22] 每个组成部分的研究贡献对这一进展都不可或缺,这些进展包括调整化学成分和加工方法、控制晶体度和形貌、以及设计表面/界面缺陷。[23,24]
纳米材料因其独特的性能和在各个领域的潜在应用而备受关注,有助于开发高效可持续的能源。纳米材料(如量子点、钙钛矿纳米粒子和纳米线)可以调节光吸收特性和电子传输,可用于制造更高效的太阳能电池装置和 LED。石墨烯基材料、金属氧化物和纳米复合材料在电池和超级电容器等储能装置中可提供更好的性能。纳米结构半导体材料可为热电应用提供热回收,从而实现协同声子迁移效应。同样,它们还提高了光电探测器的灵敏度和响应时间,使其适用于通信、传感、成像和激光设备中的应用。纳米粒子可以功能化,以增强特异性和控制释放来递送药物,从而改善治疗效果并减少副作用。基于纳米材料的生物传感器能够快速灵敏地检测生物分子,有助于疾病的诊断和监测。