摘要 在混合溶剂(水-丁醇和水-环己醇)存在下,利用醋酸铜和硫脲研究了硫化铜(CuS)的结构、成分、电气和发光特性。硫化铜样品的 X 射线衍射 (XRD) 图案显示其六方结构,这是各种混合溶剂的结果。通过使用能量色散 X 射线 (EDX) 和傅里叶变换红外 (FT-IR) 检查,确定了键和原子量百分比。使用扫描电子显微镜 (SEM) 发现水-丁醇和水-环己醇中的硫化铜颗粒形态分别为棒状和片状。使用光带能量曲线和紫外-可见光吸收光谱确定了硫化铜纳米结构的带隙能量。硫空位缺陷是 PL 光谱中出现的紫外和可见光发射带的原因。根据 CV 研究,水-环己醇辅助的硫化铜样品的电化学特性优于水-丁醇辅助的硫化铜样品。根据催化剂的效率,计算了混合溶剂辅助的硫化铜样品中坎戈红 (CR) 染料降解的比例。引言与环境问题、危险废物和有毒水污染物相关的硫化铜受到了广泛关注。有机染料对纺织和其他行业的重要性也非常重要。与传统方法相比,催化方法具有多种优势,包括氧化速度更快和不产生多环产物。由于半导体材料吸收光,带隙能量等于或大于,这可能导致自由基氧化系统表面。但如今,硫化铜因其与能量存储和生物应用(包括抗菌和抗癌治疗)的联系而成为主要研究对象。硫族化合物纳米结构半导体,包括 ZnS、CdS、NiS、CoS 和 CuS,可用于气体传感器、LED、光伏电池、光催化和其他应用。CuS 纳米结构是硫族化合物之一,是 p 型半导体材料,由于其在环境温度下的带隙低至 2.2 eV,因此非常有利于光热、光电应用。这是由于光吸收过程中光子原子分子与光吸收之间的相互作用。具有各种形态的过渡金属氧化物作为光电材料的开发引起了人们的新兴趣,最近发现的一类具有有趣光物理特性的纳米材料的报道正在促进
由于其优异的光学、电子和物理特性以及更好的可控物理尺寸调整,它填补了这一空白。此外,二维/二维范德华异质结构的层状结构性质最近引起了广泛关注。它们具有可调电子带隙、光吸收、高效的电荷分离和传输、耦合效应和低量子约束等有趣特性。12,14 – 17 Janus TMDs 材料与传统 2D 材料不同,引起了人们的浓厚兴趣。Janus TMDs 材料具有不对称晶体结构、固有平面外极化和压电性等独特特性。 18 – 23 2D/2D 范德华异质结构耦合非常重要,它会产生各种有趣的效果 24,25 这是一种结合不同 2D 材料各种特性的有用方法 26 以促进光伏技术创新。 27 通过将两个单层堆叠在一起,可以根据此优势和可调特性构建 MXO/MoX 2 异质结构。 28
摘要:透明导电材料 (TCM) 已广泛应用于触摸屏、平板显示器和薄膜太阳能电池等光电应用。TCM 的这些应用目前以 n 型掺杂氧化物为主。由于空穴迁移率低或 p 型掺杂瓶颈,高性能 p 型 TCM 仍然缺乏,这阻碍了高效的器件设计和透明电子等新应用。在这里,基于第一性原理计算,我们提出硫族化物钙钛矿 YScS 3 作为一种有前途的 p 型 TCM。根据我们的计算,它的光吸收起始点高于 3 eV,这使得它对可见光透明。它的空穴电导率有效质量为 0.48 m 0 ,是 p 型 TCM 中最小的之一,表明空穴迁移率增强。它可以通过阳离子位点上的 II 族元素掺杂为 p 型,所有这些都会产生浅受体。结合这些特性,YScS 3 有望提高 p 型 TCM 相对于 n 型 TCM 的性能。
摘要 不同行业的有机化合物在废水中产生一系列有害污染物,硫化镉(CdS)基光催化剂作为典型的光催化材料,由于其高效性和稳定性,具有强的可见光吸收、合适的能带能级和优异的电子电荷传输性能,在环境修复领域显示出巨大的潜力。硫化镉(CdS)基光催化剂降解有机污染物的研究取得了重要进展。为了提高硫化镉(CdS)基光催化剂降解污染物的速率和能力,本文介绍了各种修饰光催化剂形貌和结构的策略来提高其性能。此外,还优化了反应条件,并讨论了光催化降解的机理。总之,硫化镉基光催化剂的研究为有机污染物的降解提供了有价值的见解,并为其未来在生态环境保护中的应用带来了希望。关键词:光催化剂、CdS、环境修复、污染物、有机化合物
半导体中疾病的存在可以极大地改变其物理特性。然而,忠实地考虑它的模型仍然稀缺且计算不足。我们提出了一个数学和计算模型,能够模拟几十纳米侧长的半导体合金的光电子响应,同时涉及由纳米级的组成障碍引起的量子定位效应。该模型基于对位置景观理论使电子和孔本征孔的结构的Wigner-Weyl分析。在针对1D和2D中基于本征态的计算验证后,我们的模型应用于不同组合物的3D Ingan合金中光吸收的计算。我们获得了平均带隙以下的吸收尾部的详细结构和所有模拟组合物的urbach能量。此外,Wigner-Weyl形式主义使我们能够在所有频率下定义并计算有效局部吸收能力的3D地图。最后,所提出的方法为将此方法推广到所有能量交换过程,例如逼真的设备中的辐射和非辐射重组。
1。物质中的电子激发在各种物理现象中起关键作用,包括光吸收和运输。这些激发的特征受宿主材料的强烈影响。激子是绑定的电子 - 孔对,在过去十年中出现的低维半导体中表现出出色且异常强的电子 - 孔结合。1当彼此堆叠两个原子薄的半导体时,两层之间的原子比对可以表现出周期性的变化,从而导致一种新型的平面超级晶格,称为Moire Super晶格。Moire ́结构最近引起了极大的关注2-12,其中包括由于Moire的电势,2个Interlayer,5、6和内部电荷电荷转移而引起的空间限制。9此外,Moire的电子特性́晶格可以通过频带比对和层之间的扭曲角度调节,从而使Moire ́结构具有巨大的希望,是在未来十个十年中探测电子和光子量子现象的令人兴奋的平台。12
摘要 - 多波长的光声图像编码有关组织光吸收分布的插图。这可用于估计其血氧饱和分布(SO 2),这是组织健康和病理学的重要生理指标。然而,光功能分布的波长依赖性使精确估计值的恢复复杂化,特别是阻止了直接的光谱反转。深度学习方法已被证明有效地从模拟数据中产生SO 2的准确估计。但是,由于缺乏真实的“配对”训练数据(体内组织的多波长PA图像及其相应的SO SO SO分布),因此阻止了通用监督学习方法对真实组织的转化。在这里,我们讨论i)为什么在使用常规手段模拟的图像上训练的网络不太可能将其性能推广到真实组织上,ii)使用两种基于基于副本网络的生成性副本策略来提高SO 2估算网络的概括性的概述的通用性,以估算培训的网络对合成数据进行培训:环境。
摘要 - 准确识别复杂的地形特征,例如土壤组成和摩擦系数,对于基于模型的计划和越野环境中移动机器人的控制至关重要。光谱特征利用光吸收和反射的不同模式来识别各种材料,从而可以精确地表征其固有特性。机器人技术的最新研究探索了光谱的采用,以增强与环境的感知和相互作用。但是,安装这些传感器所需的巨大成本和精致的设置存在着广泛采用的强大障碍。在这项研究中,我们将RS-NET(RGB引入光谱网络),这是一种深层神经网络体系结构,旨在将RGB图像映射到相应的光谱签名。我们说明了如何将RS-NET与共同学习技术协同结合,以进行地形性质估计。初始结果证明了这种方法在表征广泛的越野现实世界数据集中的光谱特征方面的有效性。这些发现仅使用RGB摄像机强调了地形性质估计的可行性。
每个分析仪的特征表1显示了每种仪器的外观和特征。FTIR仪器用中红外光照射样品,并检测到进行定性和定量分析的光吸收程度。可以进行非破坏性测量,因此在FTIR测量后,可以使用另一种仪器再次分析样品。FTIR+ATR可以测量的MPS的大小为几百μm或更多。可以使用几个10秒的测量值对单个塑料进行分析。使用塑料分析仪,一个塑料分析系统,其中包括紫外线受损和受损的塑料库,即使是那些不熟悉分析的塑料库,也可以轻松地测量和分析在环境中降级的MP。py-GC-MS是一种瞬间热分解样品的仪器,通过柱子上的组件将蒸发的热解产物分离,并通过MS检测到它们。可以通过检测特定于每种塑料的热分解产品来进行定性和定量分析。由于测得的样品被热分解,因此无法对其进行分析。
当前,检测葡萄糖的大量方法显示出较高的有效性。但是,这些应用不再仅专注于临床分析,而是在医学,生物和食品领域[2],即建立新参数。和更大的特异性。因此,有必要研究以葡萄糖定量已知的方法。在临床区域,葡萄糖检测已分为两组:i)单个测量和ii)连续测量。在第一个分类中是葡萄糖和尿液测试条。两种方法都通过生物标志物或酶的葡萄糖氧化均采用了安培检测方法。另一方面,在连续监测方法中,有些人使用侵入性,无创(Ni)或最小侵入性(MI)技术,其中包括电化学,电化学,光学发光,光学和机械检测机制[3-7]。现有的葡萄糖传感的光学方法基于人体各种液体的折射率的测量(例如眼部水性幽默[6,8]),或者是人类血液的红外吸收[9]。我们研究了一种基于水溶液中葡萄糖的紫外线光吸收的不同方法。