Instructor: Prof. Yu Yao School of Electrical, Computer, and Energy Engineering Email: yuyao@asu.edu Goals: This course is designed to provide senior undergraduate students and junior graduate students background in a basic understanding of the principles and practices of modern optoelectronic devices and their important functions for applications in optical communication, sensing, imaging, and solar electricity generation.也将获得半导体光电设备设计,制造和表征的实用技能。主题1。光的浪潮a。均匀培养基中的光波b。在两个介质之间的接口处进行反射和传输。薄膜光学和涂料d。光2。介电波导和光纤a。电介质平面波导b。光纤3。半导体的光学特性a。半导体概念和能量频段b。半导体的光吸收和排放c。半导体的折射率4。高级主题(关注概念,对数学建模没有任何要求,将分配一个最终项目)a。发光二极管b。半导体放大器和激光器c。光电检测器和图像传感器d。太阳能电池
摘要 合金纳米粒子是基础研究的一个非常有趣的课题,同时在工业催化、微电子、传感器和医学方面也有很多有用的应用。它们的性质取决于原子和化学结构,而原子和化学结构一直是深入研究的主题。本文介绍了 Pt 基纳米系统化学排序和表面偏析的一些理论预测趋势,尤其是过渡金属和贵金属,它们的催化、磁性和光学性质众所周知。通过将两种不同的金属结合,可以提高催化的选择性,或增加磁系统中的磁各向异性,或调节光吸收中的表面等离子体共振,但问题是这两种物质将如何混合或分离,以及它们将如何分布在纳米粒子的表面和核心中。本文将从原子模拟中获得一些关于 Pt-X、X=Co、Pd 或 Ag 系统的一般概述。它将纳米合金所采用的化学结构与系统的化学特性(就块状合金中的有序趋势和表面合金中的表面偏析而言)联系起来。
由于设备和互连的缩小以及电子、航空航天和医疗应用的先进封装和组装,微纳米级电子元件的制造变得越来越苛刻。增材制造技术的最新进展使得制造微尺度 3D 互连结构成为可能,但制造过程中的传热是影响这些互连结构可靠性制造的最重要现象之一。在本研究中,研究了三维 (3D) 纳米粒子堆积的光吸收和散射,以深入了解纳米粒子内的微/纳米热传输。由于胶体溶液的干燥会产生不同的纳米粒子构型,因此研究了三种不同铜纳米粒子堆积构型中的等离子体耦合:简单立方 (SC)、面心立方 (FCC) 和六方密堆积 (HCP)。分析了单散射反照率 (ω) 与纳米颗粒尺寸、填充密度和配置的关系,以评估纳米颗粒填充物中 Cu 纳米颗粒的热光特性和等离子体耦合的影响。该分析深入了解了铜纳米颗粒中等离子体增强的吸收及其对纳米颗粒组件激光加热的影响。[DOI:10.1115/1.4047631]
摘要:结合密度泛函理论和变分量子动力学与 Davydov ansatz,研究了中性自由基材料中双态的光子吸收和相关磁场效应。双态是研究与真实分子振动环境耦合的两能级系统全量子动力学的理想模型系统。在这项工作中,我们模拟了中性自由基材料(4-N-咔唑基-2,6-二氯苯基)双(2,4,6-三氯苯基)-甲基)的光吸收光谱,发现最高占据分子轨道 - 单占据分子轨道 (SOMO) 和 SOMO - 最低未占据分子轨道跃迁与实验结果高度一致。分别从光谱和粒子动力学的角度全面讨论了分子内振动电子耦合的重要作用,指出不同的对称性对振动有不同的贡献和长期尺度影响。在此模型的基础上,考虑施加磁场,以动力学方式定性研究其磁性,结果可以用洛伦兹函数之和来描述。
在微级量表上控制pH值可能对研究,医学和行业的应用很有用,因此代表了合成生物学和微流体的宝贵应用。提出的囊泡系统将不同的颜色转化为周围溶液中特定的pH值变化。它可以与两个轻驱动的质子泵细菌紫红质和蓝色的光吸收蛋白淡淡的蛋白质Med12一起使用,它们在脂质膜上以相反的方向定向。计算机控制的测量设备实现了一个反馈循环,以自动调整和维护所选的pH值。可以建立跨越两个单元的pH范围,从而提供时间和pH分辨率。作为一个应用示例,呈pH敏感的酶反应,在浅色控制反应进展的情况下。总而言之,使用工程蛋白质体的浅色控制的pH调节为在微级别的不同情况下(例如合成生物学应用中)打开了新的可能性,以在微层尺度上控制过程。
作为迅速扩展的2D材料家族,MXENES最近引起了人们的关注。通过开发一种涂层方法,该方法可实现无传输和逐层膜涂层,研究了Ti 3 C 2 t x mxeneFim的非线性光吸收(NOA)。使用Z扫描技术,MXENEFILM的NOA在≈800nm处的特征。结果表明,随着层数从5增加到30的增加,从反向吸收吸收(RSA)转变为可饱和吸收(SA)。值得注意的是,非线性吸收系数的β变化从≈7.1310 2 cm GW 1到在此范围内的2.69 10 2 cm GW 1。也表征了MXENEFIM的功率依赖性NOA,并且观察到β的趋势下降以增加激光强度。最后,在≈1550nm处的2D mxene纤维的NOA的特征是将它们整合到氮化硅波导上,在其中观察到薄膜的SA行为,包括5和10层MXENE,与在≈800nm处观察到的RSA相反。这些结果揭示了2D MXENEFM的有趣的非线性光学性质,突出了它们的多功能性和实现高性能非线性光子设备的潜力。
对于微尺度 4D 光响应致动器,光在两个方面至关重要。首先,底层的增材制造技术依赖于由光吸收触发的光聚合过程。其次,光的吸收可作为驱动刺激。这两种吸收可能会发生冲突。虽然微结构需要在驱动波长下具有强吸收,但这种吸收不应干扰制造过程的吸收。本文提出了一种简单的策略来克服这些限制,并允许制造可以在不同波长的光下驱动的多光响应 3D 微结构。选择双光子 3D 激光打印作为制造技术,液晶 (LC) 弹性体作为功能材料。第一步,使用对齐的 LC 墨水配方制造 3D 微结构。然后,通过交换过程将多达五种不同的染料成功地并入 LC 微结构中,这些染料的吸收范围覆盖整个可见光区 (400-700 nm),从而可以通过使用合适的波长进行照射来实现可编程驱动。此外,通过结合表现出正交吸收的染料,可以展示波长选择性驱动。
这是一种很有前途的光吸收材料,具有低成本溶液加工、易于制造和优异的光电性能。[1,2] 自从首次报道采用甲基铵碘化铅 (MAPbI 3 ) 的钙钛矿太阳能电池 (PSC) 以来 [3],它们的小面积电池能量转换效率 (PCE) 现在已超过 25%。[4,5] PSC 的高效率是通过成分工程 [6–8]、表面钝化 [9–13] 和/或使用各种添加剂来调整钙钛矿层来实现的。[14–16] 除了钙钛矿层的组件工程外,人们还致力于开发高效的电荷传输层。[17–21] 特别是,电子传输层 (ETL) 在实现高效稳定的 PSC 中起着重要作用。 [22,23] 到目前为止,二氧化钛 (TiO 2 ) 是 PSC 中广泛应用的电子传输层,但其存在电导率低、表面缺陷密度高的问题。[24] 在替代电子传输层中,氧化锌 (ZnO) 因其高电子迁移率和与钙钛矿材料能级匹配良好而被视为一种方便的候选材料。[25,26] 这
为了寻找新的和替代能源,太阳能电池(SC)是环保,可持续和可再生能源的源泉。因此,提高SC的效率和降低成本是非常重要的任务,这些任务与太阳能的光伏转换密切相关。相应地,预计光伏元素的第三代磁盘有效,稳定和通过环保,节能和低成本技术产生。半导体纳米材料,尤其是金属氧化物和硅量子点[1-9]发挥了重要作用。这些材料对于光伏设备特别感兴趣,这是由它们的光学和电子特性归因于其表面和量子大小效应的解释。在吸收光层中应用半导体NP的应用是由诸如较大的表面积以有效吸收光吸收的大型表面积,负责提高功率转换效率的电荷载体的缩短[10],以及依赖尺寸的带量[11-13]的收集长度[11-13],允许其最大的调谐太阳能谱(符合太阳能光谱范围)(ev)(1.4 ins 1-1-14)。在适合此带隙能的材料中,最广泛使用的是硅,GAAS,
在 (001) Si 平台上外延生长 III-V 激光器正成为低成本、节能和晶圆级光子集成电路的终极集成策略。随着在 III-V/Si 兼容衬底上生长的激光二极管的性能向商业化发展,外延 III-V 激光器和 Si 基波导之间的光接口问题变得越来越紧迫。作为替代方案,选择性区域生长在 Si 上产生无缓冲 III-V 激光器,从而从本质上促进与 Si 光子学的有效光耦合。由于选择性生长的无位错 III-V 晶体的尺寸通常限制在亚波长尺度,因此主要挑战在于实现电驱动激光器,特别是如何在不引起大的光吸收损失的情况下对金属触点进行图案化。在本篇观点中,我们简要概述了在 (001) Si 平台上选择性生长的最先进的 III-V 族激光器,并讨论了这种集成方法的前景,重点介绍了实现电驱动设备的前景。我们重点介绍了选择性异质外延提供的独特优势以及实际应用面临的挑战和潜在解决方案。