在面对生物压力的情况下为自己辩护,植物采用了复杂的免疫系统,需要协调其他生物学和代谢途径。光吸收,这是跨多个细胞室并连接主要代谢的氧合光合作用的副产品途径,在防御反应中起着重要作用。过氧化氢的稳态受到光刺的强烈影响,是植物免疫中至关重要的信号分子。光呼吸代谢物,光刺激与防御激素生物合成之间的相互作用以及其他机制也涉及。对植物免疫力和光振动性之间关系的改进理解可能为作物工程提供急需的知识基础,以最大化光合作用,而没有植物免疫的负面折衷,尤其是因为光呼吸途径已成为基因工程的主要目标,其目标是提高光合作用的目标。
光合作用:历史背景;光合作用的位置;光合色素;光合作用机理 - 光依赖阶段(光反应),光系统;循环和非环状光磷酸化;光独立(生物合成)阶段 - 加尔文(C3)循环和孵化与松弛(C4)循环;影响光合作用的因素;光呼吸。植物生长和发育:植物生长的特征;生长,增长率,生长曲线的阶段;生长条件;分化,去分化和重新分化。植物细胞中发育过程的顺序;植物生长调节剂;生长素,gibberellins,cytokinins,乙烯和脱支酸的发现和生理作用。
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学
矿物营养:基本元素,宏观和微量营养素;元素本质的标准;基本要素的作用;离子跨细胞膜的运输,主动和被动传输载体,韧皮部韧皮部植物的易位,束缚实验;压力流模型;韧皮部负载和卸载酶:结构和特性;酶催化和酶抑制的机制。光合作用:光合色素(Chl A,B,Xanthophylls,胡萝卜素);光系统I和II,反应中心,天线分子; ATP合成的电子传输和机制; C3,C4和碳固定的CAM途径;光呼吸。呼吸:糖酵解,厌氧呼吸,TCA循环;氧化磷酸化,乙氧基化,氧化戊糖磷酸途径。氮代谢:生物氮固定;硝酸盐和氨气同化。植物生长调节剂:生长素,gibberellins,cytokinins,aba,乙烯的发现和生理作用。植物对光和温度的反应:光周期(SDP,LDP,日中性植物);植物色素(发现和结构),对光形态发生的红光反应;春化。-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
环境变化会影响细菌群落的成分,从而影响土壤中的生物学活性。一起,有关哲学家掌上棕榈种植土壤中细菌官能团的信息仍然有限。在这项工作中,使用V3-V4 Amplicon测序检查了夏季和雨季,夏季西马棕榈种植区的核心土壤细菌群落。我们的发现表明,这些季节对Alpha的多样性没有显着影响,但是社区的Beta多样性受季节性变化的影响。在整个土壤样品中主要鉴定了门类酸细菌,静脉杆菌,叶绿素叶绿素,甲基米拉比洛塔,甲基莫拉比洛塔,甲基莫拉比洛塔和proteeobacteria。其中,有26个属被归类为核心微生物组,主要属于未培养的细菌。基因功能与光呼吸和甲烷发生有关的基因富含两个海子。在雨季土壤中,与有氧化学化代谢和氮固定相关的基因更丰富,而人类病原体肺炎相关的基因在夏季的代表性过多。研究不仅提供了西马棕榈培养土壤固有的细菌组成,而且还提供了季节转移过程中基因的功能。
前所未有的气候条件变化将如何影响某些作物的产量和生产力以及它们对现有压力、非生物和生物相互作用的反应,是全球关注的关键问题。气候变化还会改变自然物种的丰富度和分布,或有利于入侵物种,进而改变生态系统动态和生态系统服务的提供。C3 植物和 C4 植物的基本解剖学差异导致它们对气候变化的不同反应。对于具有 C3 光合作用途径的植物,大气中二氧化碳 (CO2) 的增加会正向调节光合碳 (C) 同化并抑制光呼吸。豆科植物是 C3 植物,它们可能通过各种策略处于有利地位,以增加生物量和产量。本文全面介绍了植物生理和分子特性方面的最新进展,特别强调了气候变化情景下 CO2 浓度升高条件下的豆科植物。本文还讨论了未来行动的战略研究框架,该框架整合了基因组学、系统生物学、生理学和作物建模方法,以应对气候变化。测序和表型分析方法的进步使得利用大量遗传和基因组资源成为可能,通过部署高分辨率表型分析和高通量多组学方法来改良性状。以农业系统设计和管理、气候影响预测和疾病预报为重点的综合作物建模研究也可能有助于规划适应性。因此,结合基因组学、植物分子生理学、作物育种、系统生物学和综合作物-土壤-气候建模的综合研究框架将非常有效地应对气候变化。
生物学 生物世界的多样性:生物世界:生物世界的多样性,分类类别,生物学分类:界(原核生物界、原生生物界、真菌界、植物界和动物界),病毒、类病毒和地衣,植物界:藻类、苔藓植物、蕨类植物、裸子植物、被子植物,动物界:动物分类的基础和动物分类植物和动物的结构组织:开花植物的形态:根、茎、叶、花序、花、果实、种子,典型的开花植物的半技术描述,一些重要科的描述,开花植物的解剖学:组织系统,双子叶植物和单子叶植物的解剖学动物的结构组织:器官和器官系统,两栖动物 - 青蛙细胞:结构和功能:细胞:生命:细胞、细胞理论、细胞概述、原核细胞、真核细胞 生物分子:生物体化学成分分析、初级和次级代谢物、生物大分子、蛋白质、多糖、核酸、蛋白质结构、酶 细胞周期和细胞分裂:细胞周期、有丝分裂和减数分裂及其意义 植物生理学:高等植物的光合作用:光合作用、早期实验、光合作用的位置、参与光合作用的色素、光反应、电子传递、ATP 和 NADPH 的合成和利用、C4 途径、光呼吸、影响光合作用的因素 植物的呼吸作用:植物呼吸吗?糖酵解、发酵、有氧呼吸、呼吸平衡表、克雷布斯/柠檬酸循环、呼吸商植物生长和发育:生长、分化、去分化和再分化、发育、植物生长调节剂人体生理学:呼吸和气体交换:呼吸器官、呼吸机制、气体交换、气体运输、呼吸调节、呼吸系统疾病体液和循环:组织液-血液、淋巴、循环途径、双循环、心脏活动调节、循环系统疾病排泄产物及其消除:人体排泄系统、尿液形成、小管功能、滤液浓缩机制、肾功能调节、排尿、其他器官在排泄中的作用、排泄系统疾病