湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。
1。引言最近发出的公告,例如从美利坚合众国或法国发出的,表明空间现在已成为国防战略的明确部分。因此,需要监视关键资产,控制卫星发布等操作的控制以及对潜在或主动威胁的识别,从低地球轨道(LEO)到地球同步地球轨道(GEO)轨道。这些问题不仅与国防有关。对于平民应用也可能特别感兴趣,例如监视专用卫星(电信,观察和科学任务),交通处理,碎屑识别和跟踪。狮子座轨道特别关注越来越多的卫星占据该空间。可以轻松地跟踪轨迹,而雷达成像可以提供卫星的识别,尽管分辨率有限和深入成像[1]。光学成像可以提供互补的高分辨率图像,并评估卫星的身份,状态,动力学以及对其附近的控制。这需要具有快速转向功能的大型光圈望远镜,以跟踪快速移动的目标。自适应光学器件(AO)来补偿大气湍流。美国在此前景中发展了最先进的资产[2] [3]。本文的目的是介绍并讨论使用专用原型获得的结果。我们还展示了在此特定框架中进行图像后处理的创新工作。考虑卫星成像,后处理也是一个关键问题。Onera确实为法国国防机构开发了自适应光学(AO)辅助图像仪的原型。该系统也已被利用以证明LEO卫星到地面光学电信[4]。的确,LEO卫星在地面光学电信方面面临着类似的问题,即在类似目标上对AO进行湍流的跟踪和补偿。AO板凳位于observatoire de la cote d'Azur(OCA)的MEO望远镜上,考虑了Leo卫星成像或光学电信,该性能很大程度上取决于由卫星雪橇率驱动的湍流的快速时间演化。因此,我们已经开发了一个基于GPU-CPU的实时控制器,以减少循环延迟,从而减少时间误差。该控制器还提供了支持局部自动化的实施的灵活性,以此作为快速发展条件的答案。因此,我们利用了在天文学和生物医学成像中所做的最新工作[5] [6] [7] [8],开发了专用的盲目反向卷积算法。我们首先简要描述AO设置。我们讨论系统要求和AO系统设计权衡。然后,我们讨论了对民用狮子座卫星的后期处理,并提供了当前的结果。
上下文。在阳光恒星的宜居区内温暖的岩石外球星是当前和将来的任务的青睐目标。the-Ory表示这些行星在形成时可能会湿润,并且可以居住足够长的时间来发展。但是,目前尚不清楚这些世界上的早期海洋在多大程度上会影响潜在的生物签名的反应。目标。在这项工作中,我们测试了在计划中的生命任务框架内,在温暖,水丰富的大气中生物签名的气候化学响应,维护和可检测性。方法。我们使用耦合的气候化学柱模型1d terra来模拟地球上的行星参数和进化,在与太阳不同的距离下,行星大气的组成。,我们以10%的步骤将传入的启发提高了50%,对应于1.00至0.82 au的轨道。在表面上使用和没有现代地球的生物量通量进行。 使用大蒜辐射转移模型产生所有模拟的理论发射光谱。 然后使用 Lifesim向这些光谱的观察添加噪声并模拟观察结果,以评估如何区分地球样行星的生物和非生物气氛。 结果。 增加的启动导致地表水蒸气压力从0.01 bar(1.31%,s = 1.0)升至0.61 bar(34.72%,s = 1.5)。 在生物情景中,臭氧层生存,因为氧化物与氮氧化物的氧化物反应阻止了净臭氧化学水槽的增加。。使用大蒜辐射转移模型产生所有模拟的理论发射光谱。Lifesim向这些光谱的观察添加噪声并模拟观察结果,以评估如何区分地球样行星的生物和非生物气氛。结果。增加的启动导致地表水蒸气压力从0.01 bar(1.31%,s = 1.0)升至0.61 bar(34.72%,s = 1.5)。在生物情景中,臭氧层生存,因为氧化物与氮氧化物的氧化物反应阻止了净臭氧化学水槽的增加。的甲烷大大降低了,比地球高20%的强化。使用Lifesim进行的合成观测,假设孔径为2.0 m,并且解决功率为R = 50,表明臭氧特征在9.6 µm处的臭氧特征可靠地可靠地指向10 parsecs中的系统的O 2的地球样生物圈表面通量。由于H 2 O轮廓不同而导致的大气温度结构的差异也使观测值在15.0 µm处可以可靠地识别CH 4表面通量等于地球生物圈的行星。将光圈增加到3.5 m,并将仪器吞吐量增加到15%,将此范围增加到22.5 PC。
空间碎片既由天然和人体制成的物体组成,有些是在地球轨道上的,而另一些则穿过深空。小行星可能代表近地球和深空碎片的一种形式。在本文中,我们报告了南半球的一系列小行星观察。我们表明,阿波罗和阿特族类小行星代表了可能危险性质的另一种形式的深空碎片,这些碎片可能是绕航天器和/或基于地球的位置。我们还展示了一些操作挑战,设施的类型以及地理多样性的重要性,也就是说,对于检测,观察和表征小行星,尤其是PHA的表征所必需的。多年以来,太空机构和机构在北半球使用高增益射频天线和光学望远镜(GSSR,Arecibo,Arecibo,catalina,catalina,catalina,pan-starrs,atlas和linear and atlas and linear and linear and linear and linear and and and and System cormitation System easticaly Syperation Smasies easteriational Smasies easteration Smasies easteriated and and and sosity的层次,都使用高增益频率天线和光学望远镜观察到了太空机构和机构(NEOS)附近和监测。小行星和各种人类制成的物体直到进入北部的天空之前。位于澳大利亚的南半球小行星雷达计划(SHARP)2)在位于堪培拉深空通信络合物(CDSCC)上的70或34 m梁波导天线上使用可用的天线时间,将多普勒补偿的连续电台传输到2.114 GHz(14.2 cm)和7.1594和7.1594594594594594.15945。在澳大利亚的Narrabri的64 m Parkes或64 m Parkes或6 m×22 m的澳大利亚望远镜紧凑型阵列(ATCA)天线的回声。位于澳大利亚的南半球小行星雷达计划(SHARP)2)在位于堪培拉深空通信络合物(CDSCC)上的70或34 m梁波导天线上使用可用的天线时间,将多普勒补偿的连续电台传输到2.114 GHz(14.2 cm)和7.1594和7.1594594594594594.15945。在澳大利亚的Narrabri的64 m Parkes或64 m Parkes或6 m×22 m的澳大利亚望远镜紧凑型阵列(ATCA)天线的回声。这种NEO观察模式称为深空双重雷达。南半球计划最近也加入了塔斯马尼亚州塔斯马尼亚大学12 m大学(塔斯马尼亚州)和凯瑟琳(北领地)。将夏普的双向雷达与位于新南威尔士大学(UNSW)和西澳大利亚大学(UWA)的小光圈结合在一起,可以合并光学/RF NEO检测。虽然几十年来对小行星检测的独立贡献,但使用协调的小于0.3 - 0.5 m的仪器同步与大型小行星雷达同步,可提供观察性的灵活性和
图 3.1:手势识别图 ................................................................................................................ 45 图 3.2:ZTM 手套。................................................................................................................. 46 图 3.3:带有多个传感器的 MIT Acceleglove。...................................................................................... 47 图 3.4:CyberGlove III .................................................................................................................... 48 图 3.5:CyberGlove II。.................................................................................................................... 48 图 3.6:5DT 动作捕捉手套和 Sensor Glove Ultra。左:当前版本,右:旧版本。[73][74].................................................................................................................................. 49 图 3.7:X-IST 数据手套 ................................................................................................................ 50 图 3.8:P5 手套。................................................................................................................................. 50 图 3.9:典型的基于计算机视觉的手势识别方法 ............................................................. 51 图 3.10:手势识别中使用的相机类型 ............................................................................. 52 图 3.11:立体相机。................................................................................................................. 52 图 3.12:深度感知相机 ............................................................................................................. 53 图 3.13:热像仪 ................................................................................................................ 53 图 3.14:基于控制器的手势 ................................................................................................ 54 图 3.15:单个相机。................................................................................................................ 54 图 3.16:布鲁内尔大学 3DVJVANT 项目的全息 3D 相机原型。 ........... 55 图 3.17:3D 集成成像相机 PL:定焦镜头,MLA:微透镜阵列,RL:中继透镜。... 55 图 3.18:方形光圈 2 型相机与佳能 5.6k 传感器集成。................................ 56 图 5.1:不同的手势。................................................................................................ 70 图 5.2:系统实施框架说明。.............................................................................. 71 图 5.3:使用 WT 的 10 种不同运动的 IMF。.............................................................................. 75 图 5.4:使用 EMD 的 10 种不同运动的 IMF。......................................................................... 76 图 5.5:WT 中 10 个不同类别的 ROC。................................................................................ 79 图 5.6:EMD 中 10 个不同类别的 ROC。........................................................................... 80 图 5.7:研究中使用的手势。................................................................................ 84 图 5.8:实施框架。................................................................................................ 84 图 5.9:使用 WT 的 10 种不同运动的 IMF。................................................................................ 87 图 5.10:使用 EMD 的 10 种不同运动的 IMF。................................................................................ 89 图 5.11:WT 中 10 个不同类别的 ROC。................................................................................ 91 图 5.12:EMD 中 10 个不同类别的 ROC。................................................................................ 92 图 6.1:拔牙前第一人称短距离手部动作 ........................................................................ 97 图 6.2:拔牙后第一人称短距离手部动作 ........................................................................ 99 图 6.3:拔牙后第一人称短距离手部动作 ........................................................................ 100 图 6.4:拔牙前第二人称短距离手部动作 ........................................................................ 101 图 6.5:拔牙后第二人称短距离单次手部动作(LCR) ............................................................................................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................................................................. 105 图 6.8:拔牙后第三人称短距离单次手部动作(LCR) ............................................................................................................................................................. 107
Prosiebensat.1扩展了与SES的合作伙伴关系,2025年2月28日 - SES宣布了与Prosiebensat.1的协议多年延长。根据该协议,Prosiebensat.1将继续在其19.2度东部的Prime Video社区中使用SES的卫星在德国和奥地利分发其计划。此外,Prosiebensat.1将将其在德国流媒体平台的内容与SES的HD+电视应用程序集成在一起。在德国市场中,该协议扩展了Prosiebensat.1的卫星容量和上行链路服务,用于分发其高清渠道。此外,两家公司之间的HD+合同得到了扩展,因此Joyn的系列,节目,原创作品和独家产品将集成到SES的HD+电视应用程序中。Read more Telesat Partners with Intellian to Develop Ka-Band Flat Panel User Terminals for Telesat Lightspeed LEO Constellation 27 February 2025 – Telesat and Intellian, a global leading provider of satellite communication antennas and ground gateway solutions, today announced a contract award for Intellian to design and manufacture Ka-band flat panel User Terminals for the Telesat Lightspeed Low Earth Orbit (LEO) constellation.根据本协议,正在设计和制造全面优化的teleasat Lightspeed网络的KA波段LEO平板,以便为包括固定企业应用程序,无线回程,政府,土地移动性和海上连接的市场提供高速吞吐量。Intellian受到全世界客户的信任,以其出色的可靠性和质量而闻名。他们在主动电子扫描阵列(AESA)平板用户终端方面的技术创新和专有进步推动了Intellian's Portfolio的扩展,该投资组合现在采用了最新的开创性Ka-band Aesa技术。阅读更多SES的O3B MPOPER现在通过NSPA的MGS通过2025年2月27日为政府提供连接服务 - 继北约支持和采购机构(NSPA)的2024年合同奖励后,SES开始为卢森堡和美国政府通过其O3B Mpower Constellation提供中型地球轨道(MEO)全球服务。被称为MEO Global Services(MGS),该合同是由美国和卢森堡发起的NSPA全球商业签约SATCOM支持合作伙伴(GCC SATCOM SP)授予的,允许北约成员和北约合作伙伴参与一致性,以共识共识,以建立完全管理的低级低层竞争,高级通信,高级通信,并利用全体管理的低层竞争。SES的MEO连接使政府组织,机构和军队可以在全球陆上,海上和空中进行全球任务,以运行实时应用程序,例如高清视频通话,以及在后台可靠的其他数据密集型应用程序的同时下载。阅读更多COMTECH揭幕了全球通信技术领导者Comtech Telecommunications Corp. 26 2月26日,全球客户的新Eviphate 2.0多轨SATCOM平台,全球通信技术领导者Comtech Telecommunications Corp.今天宣布推出该公司新的Elevate 2.0 Multi-Orbit卫星通信(SATCOM”)平台。建立在该公司的现场预处理的多轨非常小的光圈终端(“ VSAT”)产品以及开发创新Satcom地面系统
“分析已解决的积聚星系作为光晕调查的关键工具”(Arrakihs)任务将在每年的天空中成像50个平方度,直至前所未有的超低表面亮度(SB),同时在两个可见的频段中(HST F475X:380至630 NM和EUCLID NM和EUCLID)同时使用带(Euclid Y:920至1230 nm和Euclid J:1169至1590 nm)。这些图像将使我们能够解决λ-Cold暗物质(λCDM)宇宙学模型中的重大问题。尤其是,如果我们的宇宙中的暗物质与标准λCDM一样偏离了冷和无碰撞模型,那么预计卫星质量功能,卫星合并率以及在矮人星系周围出现的恒星流的普遍性将受到极大的抑制。由于广泛的视野调查,由于大气背景,很难从地面上实现到极低的SB限制,因此无法进行这些观察测试。相反,Arrakihs将在低地轨道上的迷你卫星上使用创新的双眼望远镜组件。这项调查将导致超低SB SB外层流图像的第一目录,以提供一个体积有限的和质量有限的星系样品,例如附近宇宙中的银河系。Arrakihs任务的定义和独特特征是,它将这些系统成像为前所未有的表面亮度,在31 mag /arcsecond 2中,在可见波长中分辨率为0.8 ARCSEC(FWHM),并在近距离Indrrrrrared中以1.25 Arcsec(FWHM)分辨率为30 mag /arcsecond 2。Arrakihs完全符合ESA的“宇宙视野”科学重点。Arrakihs任务利用具有高技术准备水平(TRL)的空间示威技术以非常低的风险姿势进入开发。首先,Arrakihs将使用双眼ISIM-170相机,该相机已经在太空中进行了验证,并成功证明了适用于SmallSats的最佳图像质量和空间分辨率。Arrakihs任务所需的检测器升级也基于适合飞行的技术。扩展的曝光将需要基于已经开发的相同技术(提高要求)的指向稳定升级,并为Euclid和Cheops任务开发了稳定升级。有效载荷和检测器冷却技术解决方案的热机械稳定性也是从已经为Euclid和Cheops任务开发的类似解决方案中借用的。ISIM-170摄像机可以安装在几个迷你 - 卫星平台上,这些平台很容易根据当前在低地轨道(LEO)中运行的成功版本进行调整。最后,由Arrakihs联盟进行的最新模拟对我们技术达到超低SB水平的能力和成功完成Arrakihs任务的科学目标所需的高空间分辨率的能力非常高度。特别是,Arrakihs将在“宇宙愿景”计划的核心的四个关键问题中提高我们的知识:“宇宙的基本物理定律是什么?”和“宇宙是如何产生的,它是什么?”此外,Arrakihs将补充新一代的巨型基础和空间观测站。JWST将在最高红移时观察星系形成和进化的最早阶段。鲁宾天文台,罗马和欧几里得将在中间和高红移时为数百万星系提供图像和光谱。arrakihs将通过开创了超低SB的附近宇宙的前所未有的系统探索,并以极佳的空间分辨率从可见的波长到红外波长来补充对遥远宇宙的这些深入的广泛观察。总而言之,ESA的F-Mession计划提供了一个独特的机会,可以在短时间内使用太空传播平台进行引人注目的科学,并具有负担得起的预算。因此,我们设计了具有三个定义特征的Arrakihs任务:1。Arrakihs使命是科学,其重点是对我们对现代宇宙中现有紧张局势的理解产生重大影响的巨大潜力。Arrakihs任务的核心 - 对未开发的超低SB宇宙的观察,只能由于由于大气而引起的基于地面的SB敏感性的局限性才能完成。由于该任务的科学目标需要在〜1 ARCSEC分辨率的非常宽的区域中实现非常低的SB,因此无需大型光圈摄像头。相反,最佳有效载荷是一台小型的多光谱摄像头,在广阔的视野中具有出色的光学质量。
图 3.1:手势识别图 ................................................................................................................ 45 图 3.2:ZTM 手套。 .......................................................................................................................... 46 图 3.3:带有多个传感器的 MIT Acceleglove。 ...................................................................................... 47 图 3.4:CyberGlove III .................................................................................................................... 48 图 3.5:CyberGlove II。 .................................................................................................................... 48 图 3.6:5DT 动作捕捉手套和传感器手套 Ultra。 左:当前版本,右:旧版本。[73][74]。 ............................................................................................................................. 49 图 3.7:X-IST 数据手套 ............................................................................................................. 50 图 3.8:P5 手套。 ........................................................................................................................... 50 图 3.9:典型的基于计算机视觉的手势识别方法 .......................................................................... 51 图 3.10:手势识别中使用的相机类型 .......................................................................................... 52 图 3.11:立体相机。 ...................................................................................................................... 52 图 3.12:深度感知相机 ...................................................................................................................... 53 图 3.13:热像仪 ...................................................................................................................... 53 图 3.14:基于控制器的手势 ............................................................................................................. 54 图 3.15:单相机。 ............................................................................................................................. 54 图 3.16:布鲁内尔大学 3DVJVANT 项目的全息 3D 相机原型...................................................... 55 图 3.17:3D 积分成像相机 PL:定焦镜头,MLA:微透镜阵列,RL:中继透镜。 ... 55 图 3.18:方形光圈 2 型相机与佳能 5.6k 传感器的集成。 ................................................ 56 图 5.1:不同的手势。 ...................................................................................................................... 70 图 5.2:系统实现的图解框架。 ............................................................................................. 71 图 5.3:使用 WT 的 10 种不同运动的 IMF。 ............................................................................. 75 图 5.4:使用 EMD 的 10 种不同运动的 IMF。 ........................................................................... 76 图 5.5:WT 中 10 个不同类别的 ROC。 ......................................................................................... 79 图 5.6:EMD 中 10 个不同类别的 ROC。 ......................................................................................... 80 图 5.7:研究中使用的手势。 ......................................................................................................... 84 图 5.8:实施框架。 ........................................................................................................... 84 图 5.9:使用 WT 的 10 种不同动作的 IMF。 ........................................................................... 87 图 5.10:使用 EMD 的 10 种不同动作的 IMF。 ........................................................................... 89 图 5.11:WT 中 10 个不同类别的 ROC。 ......................................................................................... 91 图 5.12:EMD 中 10 个不同类别的 ROC。 ........................................................................................... 92 图 6.1:拔牙前第一人称短距离手部动作 .............................................................................. 97 图 6.2:拔牙后第一人称短距离手部动作 .............................................................................. 99 图 6.3:拔牙后第一人称短距离手部动作 ............................................................................. 100 图 6.4:拔牙前第二人称短距离手部动作 ............................................................................. 101 图 6.5:拔牙后第二人称短距离单人手部动作(LCR) ............................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................. 105 图 6.8:拔牙后第三人称短距离单人手部动作(LCR) ............................................................................................................................................................. 107................................................................ 89 图 5.11:WT 中 10 个不同类别的 ROC。 .............................................................................. 91 图 5.12:EMD 中 10 个不同类别的 ROC。 ........................................................................................... 92 图 6.1:拔牙前第一人称短距离手部动作 .............................................................................. 97 图 6.2:拔牙后第一人称短距离手部动作 .............................................................................. 99 图 6.3:拔牙后第一人称短距离手部动作 ............................................................................. 100 图 6.4:拔牙前第二人称短距离手部动作 ............................................................................. 101 图 6.5:拔牙后第二人称短距离单人手部动作(LCR) ............................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................. 105 图 6.8:拔牙后第三人称短距离单人手部动作(LCR) ............................................................................................................................................................. 107................................................................ 89 图 5.11:WT 中 10 个不同类别的 ROC。 .............................................................................. 91 图 5.12:EMD 中 10 个不同类别的 ROC。 ........................................................................................... 92 图 6.1:拔牙前第一人称短距离手部动作 .............................................................................. 97 图 6.2:拔牙后第一人称短距离手部动作 .............................................................................. 99 图 6.3:拔牙后第一人称短距离手部动作 ............................................................................. 100 图 6.4:拔牙前第二人称短距离手部动作 ............................................................................. 101 图 6.5:拔牙后第二人称短距离单人手部动作(LCR) ............................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................. 105 图 6.8:拔牙后第三人称短距离单人手部动作(LCR) ............................................................................................................................................................. 107
脚注:1。此清单适用于所有居住单元,睡眠单元,公共空间2和车库(开放或封闭,共享或个人),并在建筑物中得到认证,并在指定的情况下进行停车场。这些要求适用于所有路径,除非另有说明。这些要求不适用于停车场或停车场的能源使用成本或地段的费用不是建造者/开发商,建筑物所有者或财产经理的责任。此清单不适用于商业或零售空间,除非在ASHRAE路径中,如果包括在能源模型中,而节省则有助于实现绩效目标。此清单不适用于该物业上没有任何住宅或睡眠单元的建筑物中的公共空间2。由ANSI / Resnet / ICC 301定义的“睡眠单元”是人们睡觉的房间或空间,还可以包括永久性的生活,饮食和卫生设施或厨房设施,但并非两者兼有。如果此清单中使用“住宅单元”一词,则要求“睡眠”单元的要求。“构建”一词是指包含住宅/睡眠单元以及(如果存在)共同空间,共享一个或多个以下属性的结构:一个共同的街道地址,一个共同的入口或出口,中央/共享的机械系统,或结构上依赖性的墙壁或屋顶系统。连接两个结构的天道或微风不被认为是一个共同的入口或出口。2。3。ft。,可以被验证。在建筑物的其余部分中,最大500平方英尺连接的结构,例如4层的两单元结构(通常称为“ 2跨2s”),如果将它们从基础到屋顶护套的垂直火隔墙划分,则可以视为单独的建筑物。“公共空间”一词是指已认证的建筑物中的任何空间,这些空间可用于支持建筑物的住宅部分,而这些空间不属于住宅或睡眠单元的一部分。这包括居民使用的空间,例如走廊,楼梯,大厅,洗衣房,健身室,住宅娱乐室和餐厅,以及建筑物管理,管理或维护的办公室和其他空间,以支持居民。对于ASHRAE路径,“共同空间”的要求适用于商业或零售空间,在该空间中,它们包含在能源模型中,并储蓄有助于实现绩效目标。根据评估者的酌情决定权,建筑商或开发人员最多可以验证五个指定的清单项目。出于此清单的目的,“构建器”代表建筑商或开发人员。当此津贴用于标记为“ Pre-Rock + 20”的项目时,每个住宅单元最多200平方米ft。在一般安装干墙之前安装了干墙的墙壁区域(即“预岩”区域,例如浴缸或楼梯后面的墙壁),以及额外的20平方米。ft。在一般安装干墙之前安装了干墙的墙壁区域,再加上50平方米的ft。,可以被验证。标记为“ 20平方”的项目ft。”,最多20平方英尺4。ft。每个住宅单元和50平方米 ft。在建筑物的其余部分中,建筑商可以验证。 对于标记为“ 2种渗透”的物品,每个住宅单元最多两次穿透,在建筑物的其余部分中有5个可以验证建筑商。 必须在现场现场在现场验证其余的项目和区域(即,除了建造者验证的所有其他区域),或者,对于适用的最低额定功能,使用ANSI / RESNET / ICC 301(例如,用于Slab slab slab bab bab bab bab ball Interualder Interualsion或Continual Interumation sallundsulation或Continual insuluation inseruality Insuly Interumation)。 行使时,建筑商的责任将由建筑商或其指定代理人正式承认,并在清单上签署了他们已验证的项目。 但是,如果质量保证审查表明项目尚未成功完成,则评估者将负责促进纠正措施。 “评估者”一词是指完成认证所需的第三方验证的人。 a)应:a)为ANSI / RESNET / IECC 301定义的认证评估者,批准的检查员,或由家庭认证组织(HCO)或多户家庭审查组织(MRO)确定的同等指定;并且,b)参加并成功完成了EPA认可的培训课程。 请参阅www.energystar.gov/mftraining。 如《国家计划要求》中所述,允许根据MRO或HCO采样协议进行操作的评估者使用MRO或HCO批准的采样协议验证指定“经过评估者”的任何清单项目。 5。 6。ft。每个住宅单元和50平方米ft。在建筑物的其余部分中,建筑商可以验证。对于标记为“ 2种渗透”的物品,每个住宅单元最多两次穿透,在建筑物的其余部分中有5个可以验证建筑商。必须在现场现场在现场验证其余的项目和区域(即,除了建造者验证的所有其他区域),或者,对于适用的最低额定功能,使用ANSI / RESNET / ICC 301(例如,用于Slab slab slab bab bab bab bab ball Interualder Interualsion或Continual Interumation sallundsulation或Continual insuluation inseruality Insuly Interumation)。行使时,建筑商的责任将由建筑商或其指定代理人正式承认,并在清单上签署了他们已验证的项目。但是,如果质量保证审查表明项目尚未成功完成,则评估者将负责促进纠正措施。“评估者”一词是指完成认证所需的第三方验证的人。a)应:a)为ANSI / RESNET / IECC 301定义的认证评估者,批准的检查员,或由家庭认证组织(HCO)或多户家庭审查组织(MRO)确定的同等指定;并且,b)参加并成功完成了EPA认可的培训课程。请参阅www.energystar.gov/mftraining。如《国家计划要求》中所述,允许根据MRO或HCO采样协议进行操作的评估者使用MRO或HCO批准的采样协议验证指定“经过评估者”的任何清单项目。5。6。除了评估者以外,没有其他方可以使用抽样来完成此清单。标题为“ N/A”的列,该列表示“不适用”的项目,应在建筑物中不存在的清单项目或与本地需求发生冲突时使用。提供了两种替代方案:a)II级空腔绝缘材料可用于在1至4的气候区域中包含一层连续的空气不可渗透绝缘≥R-3的组件,在5至8的气候区域中,≥R-5; 1 b)即使由于绝缘过量而发生压缩的情况,即使在压缩的情况下进行全部宽度和深度,只要Batts的R值通过制造商的指导进行了适当评估,并且唯一可以防止IS隔离级是由IS隔离来实现I级,即使是由于绝缘的适当评估,唯一可以通过实现I级的I是由I级的隔热是由I是由I的压缩,即使是由于绝缘过量而进行的,因此即使在压缩的情况下进行压缩,也可以在地板上使用。7。确保使用ANSI / Resnet / ICC 301(包括所有附录和规范性附录)确保符合此要求,并根据HCO或MRO定义的时间表实现了新版本和附录,该建筑物已认证为www.energystar.gov/eriexceptions列出的批准的异常。8。窗口比率被视为所有窗口区域的总和除以总外部墙面面积。所有装饰玻璃和天窗窗户区域都有贡献到超过壁比(WWR)的总窗户区域。窗帘壁系统的窗帘部分有助于高级壁面积。9。对于国家v1.2和1.3,2021 IECC气候区域名称适用,如《代码》的R301节中的定义和说明。对于除National V1.2和1.3以外的所有版本,2009年IECC气候区域名称均适用,如该法规的R301节所述和说明。请注意,与先前的版本相比,某些位置已转移到2021 IECC的不同气候区域。10。项目1.5不适用于木结构墙。项目1.5也不适用于与讲台相关的混凝土地板边缘,因为项目3.5适用。项目1.5适用于将条件空间与外部区分开的墙壁,包括与其他建筑物相邻的墙壁以及与地板搭配和中间地板边缘之间相关的墙壁区域。11。用作被动太阳能设计的热质量组件(例如Trombe Wall)的质量壁是不受项目1.5的豁免。有资格获得这种豁免,被动太阳能设计应由以下五个组件组成:光圈或收集器,吸收器,热量,分配系统和控制系统。有关更多信息,请参见:www.energy.gov/sites/prod/files/guide_to_passive_solar_home_design.pdf。质量墙不属于被动太阳能设计的一部分(例如,CMU块或记录房屋外壳)应使用第1.5项中概述的策略或以最少的热阻力为组装中概述的策略,该方法使用与2013 Ashrae Handbook一致的方法确定的方法,应与基本原理的限制,以≥50%的限制为定义,因为≥50%的材料,定义为≥50%的材料,该方法具有定义的,该方法具有定义的,该方法具有定义的限制。 2009 IECC表502.1.2中的U因子。质量墙不属于被动太阳能设计的一部分(例如,CMU块或记录房屋外壳)应使用第1.5项中概述的策略或以最少的热阻力为组装中概述的策略,该方法使用与2013 Ashrae Handbook一致的方法确定的方法,应与基本原理的限制,以≥50%的限制为定义,因为≥50%的材料,定义为≥50%的材料,该方法具有定义的,该方法具有定义的,该方法具有定义的限制。 2009 IECC表502.1.2中的U因子。记录识别最小热电阻的路径,其电阻值应由评估者收集,并应检查第1.5项验证或经过验证的盒子的任何构建器。