自伦琴于1895年发明X射线以来,放射治疗发展迅速。此后,X射线生产技术的进步主要集中在计算机控制的强度调制光束传输上。1 利用诸如直线加速器 (LINAC) 等先进设备产生的辐射已成为一种有效的治疗工具。与传统的X射线机相比,LINAC 产生的辐射具有多种优势。现代放射治疗主要使用同期开发的医用 LINAC 产生的辐射。LINAC 可以对高能X射线进行修改,使其与肿瘤的形状相符,从而有效杀死癌细胞,同时保护周围的健康组织。此外,为了产生相对论速度的电子,高功率 LINAC 也正在得到推广。2
简介全脑放射治疗 (WBRT) 是治疗脑转移瘤最有效的方法之一。全脑放射治疗通常采用 3D 适形计划,右侧和左侧光束排列,使用 6 兆伏 (MV) 光束能量。与高能光子束相比,低能光子束在表面水平分布的剂量更大。使用高能光子束 (15 MV) 治疗 WBRT 患者可以减少头皮剂量并提高患者的整体生活质量 (QOL)。方法该研究是对 10 名随机选择的全脑放射治疗患者的回顾性剂量分析。每位患者都有四个计划来比较 6 MV 与 15 MV 光子能量以及头皮保留技术与开放场技术。由于缺乏 IRB 批准,关键结构和头皮的剂量由首席研究员制作和分析。使用 IBM-SPSS Statistics 软件进行配对 t 检验,以检验组均值之间的显著性。结果结果表明,与 6 MV 计划和开放场技术计划相比,15 MV 计划和头皮保留计划的头皮剂量水平具有统计学意义的降低。与 6 MV 计划和头皮保留技术计划相比,15 MV 计划和开放场技术计划对大脑的剂量覆盖率更高。与 15 MV 相比,6 MV 对晶状体和视神经的剂量具有统计学意义的降低,而与 6 MV 相比,15 Mv 对腮腺的剂量具有统计学意义的降低。与开放场技术相比,头皮保留技术计划对晶状体和腮腺的剂量具有统计学意义的降低。结论通过使用头皮保留技术和/或使用更高能量的光子束(15 MV),可以显著减少头皮剂量,同时保持对大脑的足够覆盖。计划之间的关键结构剂量在临床上并不显著,并保持在其分配的公差范围内。未来的研究应该检查由于头皮剂量减少而导致的临床脱发和脱发的总体质量。
- 可以使用MLCS实现。- 每个光束仅处理目标的一部分 - 可以通过标准的“正向”或反迭代方法来计划 - 给出更高的自由度,并可能更宽松的剂量
我们从理论上研究了手性波导中光子的少体和多体动力学。特别是,我们研究了脉冲通过手性耦合到波导的 N 个两级系统集合的传播。我们表明,该系统支持相关多光子束缚态,这些束缚态具有明确定义的光子数 n,并以 1 =n 2 的群延迟比例在系统中传播。这产生了一个有趣的结果,即在传播过程中,入射相干态脉冲会分解为不同的束缚态分量,这些分量可以在足够长的系统中在输出端空间分离。对于足够多的光子和足够短的系统,我们表明 n 体束缚态的线性组合恢复了自诱导透明中众所周知的平均场孤子现象。因此,我们的工作涵盖了从少光子量子传播到真正的量子多体(原子和光子)现象以及最终的量子到经典跃迁的整个范围。最后,我们证明束缚态可以与额外的光子发生弹性散射。总之,我们的结果表明,光子束缚态是真正独特的物理对象,它来自光子和两级发射器之间最基本的光物质相互作用。我们的工作为在手性波导 QED 中研究量子多体物理和光子孤子物理打开了大门。