摘要:时间相关单光子计数 (TCSPC) 用于获取单光子雪崩二极管产生的飞行时间 (TOF) 信息。由于每个直方图的测量值受限且存在高背景光,因此很难在统计直方图中获得 TOF 信息。为了提高这些条件下的稳健性,将机器学习的概念应用于统计直方图。使用我们介绍的多峰提取方法,然后进行基于神经网络的多峰分析,可以将分析和资源集中在直方图中的少量关键信息上。评估多个可能的 TOF 位置并分配相关的软决策。与使用传统数字处理的情况相比,所提出的方法在恶劣条件下分配 TOF 的粗略位置 (± 5 %) 时具有更高的稳健性。因此,它可以用于提高系统的稳健性,尤其是在高背景光的情况下。
弥漫性相关光谱(DCS)是一种越来越流行的非侵入性深层组织血流监测的新兴方式。它对来自单个斑点的快速波动光子计数signals进行了自相关分析。在这封信中,我们表明,可以从CCD摄像机获得的斑点的空间分布进行更简单的分析中获得相同级别的深层组织流量信息,我们将其命名为diffuse speckle对比度分析(DSCA)。均显示了流动幻像实验和体内袖口遮挡数据。DSCA可以被视为一种新的光学方式,结合了DCS和激光斑点对比度(LSCI),它利用了简单的仪器和分析,但对深层组织的流动很敏感。©2013美国光学学会
I16 是一条位于 Diamond Light Source 的高通量、高分辨率 X 射线光束线。该光束线工作在 2.7-15 KeV 范围内,是一种专为研究单晶样品的共振和磁散射过程而优化的衍射设备 [1]。共振弹性 X 射线散射是表征材料的电子、磁性和结构特性的理想选择,因为它对原本较弱的散射过程具有增强的灵敏度,可提供光谱信息和化学选择性。I16 的主仪器是一台大型 6 圆 K 衍射仪,能够适应各种辅助环境。该光束线可完全控制其大部分能量范围内的入射光子偏振。它与大光子计数面积探测器和安装在 K 衍射仪上的真空线性偏振分析仪相结合,用于隔离和增强与有序现象相关的特定散射过程。
提出了一个名为Tupi的混合像素光子计数检测器系列,以符合Orion的[1]柔性X射线梁的规格。这将是有史以来第一个连接到同步子束线的最大生物安全实验室。TUPI检测器将基于3x1 TimePix4 [2] ASIC(应用程序特定集成电路)的基本模块,该模块可以铺有瓷砖以组装较大的活动区域。基本模块具有1344 x 512像素(55μm像素尺寸),在约74 mm x 28 mm面积上达到688 kpixels。它可以在所谓的“数据驱动”模式(读取TOT和TOA数据时)达到最高11 kHz的成像采集率,并区分3 x 10 6 pH/s/mm 2,返回像素中沉积的光子能量信息。可以在16位计数深度的情况下达到近44 kHz,并且可以区分高达5 x 10 9 pH/s/mm 2的命中率。
摘要 冠状动脉疾病 (CAD) 仍然是全球发病率和死亡率的主要原因,因此诊断技术亟待改进。冠状动脉 CT 血管造影 (CCTA) 已成为一种重要的非侵入性工具,可用于评估冠状动脉解剖结构和检测动脉粥样硬化斑块负荷,具有高空间分辨率。本综述探讨了 CCTA 的发展,重点介绍了其技术进步、临床应用和挑战。多探测器 CT、光子计数 CT 和 FFR-CT 等功能评估工具等关键创新增强了 CCTA 的诊断和预后能力。尽管取得了这些进展,但与辐射暴露、碘造影剂和患者特定限制相关的问题仍然存在。未来的方向包括开发新型成像生物标志物和最小化辐射暴露的策略。通过综合现有文献和最新发展,本文全面了解了 CCTA 在当代 CAD 管理中的作用。
鉴于最近在电光采样在检测电磁场基态和超宽带压缩态的亚周期尺度量子涨落方面的实验应用方面取得的进展,我们提出了一种方法,将宽带电光采样从光谱方法提升为全量子断层扫描方案,能够在时间域中直接重建自由空间量子态。通过结合两种最近开发的方法来从理论上描述量子电光采样,我们以分析的方式将电光信号的光子计数概率分布与采样量子态的变换相空间准概率分布联系起来,该分布是采样中红外脉冲态和超宽带近红外探测脉冲之间时间延迟的函数。我们对噪声源进行了分类和分析,并表明在使用超宽带探测脉冲的量子电光采样中,可以观察到由于纠缠破坏而引起的热化。减轻热化噪声可以实现宽带量子态的断层重建,同时允许在亚周期尺度上访问其动态。
许多量子计算和通信协议 ( 1, 2 ) 的一个关键要求是将特定的光量子态作为信息处理的资源。下面,我们将关注传播光束的量子态,它可以通过光子计数或零差检测来分析,零差检测测量信号态与具有相对相位 θ 的强参考光束之间的干涉。这可以测量一个称为电场“正交分量”的物理量,与算符 ˆ x θ = ˆ xcosθ + ˆ psinθ 相关,其中 ˆ x 和 ˆ p 是正则共轭场可观测量。算符 ˆ x 和 ˆ p 类似于粒子的位置和动量,它们通常被称为“量子连续变量”(QCV)。根据海森堡不等式,它们不能以无限的精度同时确定,所以一般不能为电场定义一个适当的相空间密度Π(x, p)。然而,可以定义一个准分布W(x, p),称为维格纳函数,其边际函数产生概率分布P(xθ)。通过测量几个θ值的分布P(xθ),可以重建维格纳函数;这个逆过程称为量子层析成像(3)。
多址信道 (MAC) 由多个发送者同时向单个接收者传输消息组成。对于经典量子情况 (CQ MAC),可实现的速率是假设所有消息均已解码而已知的,这是量子网络设计中的常见假设。然而,这种传统的设计方法忽略了全局网络结构,即网络拓扑。当 CQ MAC 作为量子网络通信的一部分时,这项工作表明,计算属性可用于通过依赖于网络拓扑的代码设计来提高通信速度。我们量化了具有双发送者 CQ MAC 的计算属性的代码可实现的量子通信速率。当双发送者 CQ MAC 是具有二进制离散调制的玻色子相干信道时,我们表明它实现了最大可能的通信速率(单用户容量),这是传统设计无法实现的。此外,这种速率可以通过不同的检测方法实现:量子(有或没有量子记忆)、开/关光子计数和同差(每种方法的光子功率都不同)。最后,我们描述了两个实际应用,其中一个是加密应用。
光子计数,基于直接转换或闪烁体)。他们的工业应用是由各个委员会(ASTM,CEN,ISO等)标准化的。是由X射线辐射的量子性质引起的,所有讨论的检测器都在其图像中显示出噪音。典型的噪声源是光子噪声,固定图案噪声是由检测器设计引起的,以及由物体结构和表面产生的噪声。检测器生产过程中不同的检测原理和制造局限性以不同的方式转移噪声贡献。作为结果,可以为不同的检测器建立基于可实现的图像质量的不同应用程序限制。此知识对于最佳检测器选择和暴露条件至关重要。这些不同的噪声源及其对图像质量的影响将在演讲中讨论。将从基本的检测原理开始实践外介绍,这表明在考虑图像质量方面时,每个检测原理在考虑图像质量方面时仍然具有自己的优势和缺点。关键字:数字工业放射学,图像质量,图像噪声,射线照相膜,计算射线照相,数字探测器阵列
Excelitas Technologies 的 C30902EH 系列雪崩光电二极管采用双扩散“穿透”结构制造而成。此结构在 400 nm 和 1000 nm 之间提供高响应度,并在所有波长下提供极快的上升和下降时间。器件的响应度与高达约 800 MHz 的调制频率无关。C30902SH 系列硅 SPAD 提供极低的噪声和大暗电流,可实现非常高性能的数据和距离测量。它们特别适合超低光照水平检测应用(例如单光子计数和量子通信),适用于光功率小于 1 pW 的情况。C30902SH 可在线性模式(V OP < V BD )下使用,典型增益为 250 或更高,或在“盖革”模式(V OP > V BD )下使用,具有极低且稳定的暗计数率和脉冲后比。在此模式下,无需放大器,单光子检测概率最高可达约 50%。为了获得更高性能,这些高性能 SPAD 可配备单级或双级热电冷却器。