放射治疗可能有助于实现不同的治疗目标。例如,它可以提高手术的有效性,有助于防止癌症扩散,或减轻晚期癌症的症状。大多数放射治疗设备使用光子束。光子也用于X射线,但剂量较低。光子束可以到达体内深处的肿瘤。当光子束穿过身体时,它们会沿途散射一些辐射。这些射线到达肿瘤后不会停止,还会到达正常组织。放射治疗是癌症治疗方法之一,它使用高能粒子或波(如X射线、伽马射线、电子束)或使用某种类型的能量来阻止癌细胞的生长和分裂。结果,细胞会逐渐萎缩并死亡。放射治疗的目标是在对健康细胞的损害最小的情况下摧毁癌细胞,但有时这种治疗也会损害癌组织附近的健康细胞,或通过破坏其DNA来阻止它们生长和分裂。此外,放射治疗可作为治疗的一部分,在手术切除恶性肿瘤后防止肿瘤复发。放射治疗可增强化疗的效果,并可在化疗前、化疗后或化疗同时用于敏感肿瘤。
用光照射纳米金属会驱动电荷载体(等离子体)的集体振荡和超出等离子体近场衍射极限的光局域化。等离子体的能量在几十飞秒内消散,要么通过光子辐射发射,要么通过电子-空穴激发,产生非平衡载流子分布。近年来,等离子体学的重点是等离子体能量收集。[1–3] 新兴的混合等离子体学领域旨在将金属纳米结构与其他材料(特别是半导体)连接起来,将等离子体转换为具有重大应用的电子激发。混合等离子体装置可用于光收集、光化学、光催化、光电探测器和单分子探测器。[2,4–7] 对于这些应用,辐射损耗是
7.5 响应随辐射入射角的变化。.............16 7.5.1 要求 - β辐射。...............................16 7.5.2 测试方法 ........................................ 16 7.5.3 要求 - 光子辐射 .。。。。。。。。。。。。。。。。。。。。。。。。..16 7.5.4 测试方法 .............................................. 16 7.6 剂量当量读数的保留 .................。。。。。。。。。。。。16 7.6.1 要求............................................ 16 7.6.2 测试方法 ............................................ 18 7.7 剂量当量剂量计的剂量当量率依赖性 .......18 7.7.1 要求............................................ 18 7.7.2 测试方法(仅型式试验) ............................18 7.8 过载特性。.....。。。。。。。。。。。。。。。。。。。。。。。。.........19 7.8.1 要求........................................ 19 7.8.2 测试方法 ........................................ 19 7.8.2.1 剂量当量剂量计 ........................ 19 7.8.2.2 剂量当量率剂量计 ........................ 19 7.9 对混合辐射场的响应。.......。。。。。。。。。。。。。。。。。。。。。。19 7.9.1 要求...................................... ... 19 7.9.2 测试方法 .............................................. 19 7.10 对中子辐射的响应 .............。 。 。 。 。 。 。 。 。 . . . . . . div> . . . . . . . 20 7.1 0.1 要求 . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 20 7.10.2 测试方法。 . . . . < div> 。 。 。 。 。 。 。。。。。。。。。。...... div>.......20 7.1 0.1 要求 ...... div>.....。。。。。。。。。。。。。。。。。。。。。。。。...... div>20 7.10.2 测试方法。....< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20
放射疗法用于治疗约50%的所有人类癌症,这些癌症主要采用光子辐射。然而,由于更精确的剂量沉积和增加的线性递送转移(LET),颗粒放疗对常规光子具有显着益处,从而产生增强的治疗反应。具体而言,质子束疗法(PBT)和碳离子放疗(CIRT)的特征是Bragg峰,该峰会产生低入口辐射剂量,其中大多数能量沉积在一个小区域内定义,可以专门针对肿瘤,以低出口剂量为下降。PBT被认为相对较低,而CIRT则更密集地电离,因此较高的LET。尽管采用了放射疗法类型,但肿瘤细胞的杀伤仍依赖于引入DNA损伤,这使肿瘤细胞的修复能力淹没了。众所周知,DNA损伤的复杂性随着使生物学有效性增强而增加,尽管在不同的辐射源之后被激活的特定DNA修复途径尚不清楚。需要此知识来确定是否可以针对这些途径内的特定蛋白质和酶来进一步提高辐射的疗效。在这篇综述中,我们概述了对这些响应响应的辐射方式和DNA修复途径。我们还提供了研究研究和DNA损伤复杂性对DNA修复途径选择的影响的最新知识,其次是证据,证明了这些途径中的酶如何有可能被治疗中利用以进一步提高肿瘤放射效率,从而进一步提高放射治疗的功效。
该药品需要接受额外监测。这将可以快速识别新的安全信息。请医疗保健专业人员报告任何疑似不良反应。有关如何报告不良反应,请参见 4.8 节。 1. 药品名称 Pluvicto 1 000 MBq/mL 注射/输注溶液 2. 定性和定量组成 在校准日期和时间,1 mL 溶液含有 1 000 MBq 镥 (177 Lu) vipivotide tetraxetan。在给药日期和时间,每个单剂量小瓶的总放射性活度为 7 400 MBq ± 10%。鉴于校准日期和时间的固定体积活度为 1 000 MBq/mL,小瓶中溶液的体积范围可为 7.5 mL 至 12.5 mL,以在给药日期和时间提供所需的放射性活度。物理特性 镥-177 衰变为稳定的铪-177,物理半衰期为 6.647 天,衰变过程中会发射最大能量为 0.498 MeV(79%)的β-射线以及 0.208 MeV(11%)和 0.113 MeV(6.4%)的光子辐射(γ)。 已知作用的辅料 每毫升溶液含最多 0.312 mmol(7.1 毫克)的钠。每瓶最多含 88.75 毫克钠。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 注射/输注溶液。澄清、无色至微黄色溶液,pH 值:4.5 至 7.0。