激光引起的周期性表面结构(LIPS),尤其是表现出高空间频率LIPS(HSFL)的表面结构,由于其快速纳米结构的产生能力,因此在精确制造中具有至高无上的意义。但是,对于Au,在微纳米应用中广泛使用的材料,HSFL的表现仍然难以捉摸。这项研究成功地制造了HSFL,其周期性为100 nm,利用了520 nm飞秒激光(FS-LASER)引起的结晶。启动HSFL形成的基本元素在于用无序的晶格结构与FS激光诱导的结晶相结合。无序的晶格结构促进了电子在热传输中偶联的占优势,从而抑制了热电子扩散效果 - 这是HSFL形成的先决条件。结晶控制了“非晶Au”的转换为典型的Au的结晶状态,同时还可以使周期乘法取决于FS-LASER脉冲的数量。它最终促进了在晶体AU上形成100 nm HSFL的形成。此外,通过在单层石墨烯中的周期性纳米图案(即HSFL)中的应用中,Au HSFL的多功能性得到了证明。因此,除了揭示了基于金属HSFL形成的新型物理机制外,Au HSFL的成就无疑有望在纳米电子和纳米光子学方面取得重大进步。
1-1简介。1-2光的特性。 1-3折射率。 1-4光路。 1-5的光速。 1-6个阴影。 1-7光的波长。 1-8电磁频谱。 1-9可见区域。 1-10光的双重性质。 1-11 fermat原理2-平面表面的反射和折射2-1灯光射线2-2射线2-2平面表面的反射和折射2-3个临界角度和总内部反射2-4平行平行平板2-5刷新2-6 priST折射2-6最小偏移角度2-7分散2-7分散2-8次彩虹。 3-球形表面上的反射和折射3-1标志3-2符号3-2反射和球形表面的折射3-3镜3-4镜3-4侧面和纵向放大倍率3-5焦点和焦距3-6 3-6虚拟图像3-7高斯公式的虚拟图像3-7衍生。 4-镜头4.1镜头术语4.2薄镜头4.3焦点和焦距4.4偶联点4.5图像跟踪4.6镜头制造商方程4.7薄镜的高斯公式4.8放大倍率4.9镜头的功率4.9镜头4.10镜头4.10复合镜头和等效的厚度厚4.11厚4.11厚4.11。1-2光的特性。1-3折射率。1-4光路。1-5的光速。1-6个阴影。1-7光的波长。1-8电磁频谱。1-9可见区域。1-10光的双重性质。 1-11 fermat原理2-平面表面的反射和折射2-1灯光射线2-2射线2-2平面表面的反射和折射2-3个临界角度和总内部反射2-4平行平行平板2-5刷新2-6 priST折射2-6最小偏移角度2-7分散2-7分散2-8次彩虹。 3-球形表面上的反射和折射3-1标志3-2符号3-2反射和球形表面的折射3-3镜3-4镜3-4侧面和纵向放大倍率3-5焦点和焦距3-6 3-6虚拟图像3-7高斯公式的虚拟图像3-7衍生。 4-镜头4.1镜头术语4.2薄镜头4.3焦点和焦距4.4偶联点4.5图像跟踪4.6镜头制造商方程4.7薄镜的高斯公式4.8放大倍率4.9镜头的功率4.9镜头4.10镜头4.10复合镜头和等效的厚度厚4.11厚4.11厚4.11。1-10光的双重性质。1-11 fermat原理2-平面表面的反射和折射2-1灯光射线2-2射线2-2平面表面的反射和折射2-3个临界角度和总内部反射2-4平行平行平板2-5刷新2-6 priST折射2-6最小偏移角度2-7分散2-7分散2-8次彩虹。3-球形表面上的反射和折射3-1标志3-2符号3-2反射和球形表面的折射3-3镜3-4镜3-4侧面和纵向放大倍率3-5焦点和焦距3-6 3-6虚拟图像3-7高斯公式的虚拟图像3-7衍生。4-镜头4.1镜头术语4.2薄镜头4.3焦点和焦距4.4偶联点4.5图像跟踪4.6镜头制造商方程4.7薄镜的高斯公式4.8放大倍率4.9镜头的功率4.9镜头4.10镜头4.10复合镜头和等效的厚度厚4.11厚4.11厚4.11。
计划委员会:罗斯 - 霍尔曼理工学院(美国)霍斯辛·阿利萨法伊(Hossein Alisafaee); John P. Deegan,Rochester Precision Optics,LLC(美国);里克·菲茨帕特里克(Rick Fitzpatrick),挤满了有限责任公司(美国); Marcel Friedrichs,Fraunhofer-InstitutfürProduktionStechnologieIPT(德国); Ulf Geyer,Auer Lighting GmbH(德国); Panasonic生产工程有限公司Koji Handa(美国); Sai K. Kode,Micro-Lam,Inc。(美国); Oscar M. Lechuga,Fresnel Technologies Inc.(美国); Chris Morgan,Moore Nanotechnology Systems,LLC(美国); Panasonic生产工程有限公司Tomofumi Morishita(日本); J. David Musgraves,Musgraves Consulting(美国);吉姆·奥尔森(Jim Olson),Syntec Optics(美国);迈克尔·舒布(Michael P. Schaub),元(美国); Ulrike Schulz,Fraunhofer-InstitutfürAngewandteoptik und feinmechanik iof(德国);汉密尔顿·谢泼德三世(Hamilton Shepard III),Waymo,LLC(美国); Jan-Helge Staasmeyer,Leica Camera AG(德国)
一般信息 客户服务和会议信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
1。通信设备通过玻璃管发送光信号。2。计算机存储设备使用光学技术。3。高速公路收费站使用光学技术来扫描支付付款转会器并为车牌拍照。B.光是发射电磁(EM)辐射的一种能量形式。光速是一个科学常数。Light以每秒186,000英里的速度行驶。是自然能源刺激视力并使事物可见。光在波长范围内运行。EM光谱范围从无线电(最低能量/最长波长)到伽马射线(最高能量/最短波长)。1。光子是光的最小颗粒,是对光能的测量。在光子中测量了电磁体格上的任何波长的能量。2。白光是无色的,是以相同强度存在的所有可见光谱的所有不同波的结果。日光和灯泡会产生白光。3。光能和可见光不同。在物理学中,光可以指任何类型的电磁(EM)辐射波。对象的透射可能是透明的,但与此同时,它会阻止有害的紫外线穿过对象。例如,汽车挡风玻璃允许可见光通过,但是许多(如果不是全部)阻止有害的紫外线影响pasengers。例如:b。重要的是要考虑可用光的不同方式。传输光穿过几乎没有能量损失的物体。在光线击中不透明物体时停止时,存在吸收的光能。c。当光从物体弹起时,会存在反射的光能。d。折射光改变了由于光传递的物体而引起的光波的行为。e。衍射是光线通过物体的角或边缘的轻微弯曲。
光学、光学技术和光子学为解决 21 世纪社会当前和未来的重大挑战提供了不可或缺的关键技术。因此,PTB 的光学部门将其研究和开发任务调整为能够最有效地利用这些关键技术用于未来的计量服务。PTB 的光学部门将其研究、开发和服务任务集中在长度和尺寸计量、辐射测量和光度测量以及时间和频率领域的计量上。该部门实现了国际单位制 (SI) 的三个基本单位坎德拉、米和秒(与这三个领域相对应),并将它们及其派生单位以足够的不确定度传播给客户。自 2013 年初以来,该部门根据以下四个部门组织工作:光度测定和应用辐射测量、成像和波动光学、长度单位和量子光学以及时间和频率。此外,在 PTB 成立了 QUEST 研究所,隶属于汉诺威莱布尼茨大学量子工程和时空研究卓越集群中心。下面,我们将介绍去年光学部门和 PTB QUEST 研究所四个部门取得的重要成果和特殊发展。
本作品“按原样”提供。麦格劳-希尔及其许可人对本作品的准确性、充分性或完整性,或使用本作品所获得的结果不作任何保证或担保,包括任何可通过超链接或其他方式从本作品访问的信息,并明确否认任何明示或暗示的担保,包括但不限于适销性或特定用途适用性的暗示担保。麦格劳-希尔及其许可人不保证或担保本作品所含功能将满足您的要求,也不保证其运行不会中断或无错误。麦格劳-希尔及其许可人均不对您或任何其他人因作品中的任何不准确、错误或遗漏(无论原因如何)或由此造成的任何损害承担责任。麦格劳-希尔对通过作品访问的任何信息的内容不承担任何责任。在任何情况下,麦格劳-希尔和/或其许可人均不对因使用或无法使用作品而导致的任何间接、偶然、特殊、惩罚性、后果性或类似损害承担责任,即使他们中的任何人已被告知此类损害的可能性。此责任限制适用于任何索赔或原因,无论此类索赔或原因因合同、侵权或其他原因引起。
对宽带材料(例如眼镜和晶体)的精确和高质量加工的需求在科学和工业中具有相当大的意义。在这些材料中,蓝宝石由于其出色的机械和光学特性,高导热率和稳定性,低电导率以及针对苛刻的化学物质的弹性而脱颖而出。尽管蓝宝石的硬度很硬,但蓝宝石还是脆弱的,使其容易在传统的加工尝试中进行破解。最近,诸如激光消融之类的替代非接触方法已成为提高加工质量的潜在解决方案。然而,对宽带材料的激光处理的研究,尤其是利用飞秒固态激光系统的高谐波,仍然是不完整的。我们的研究重点是研究使用飞秒(300 fs)深紫外线(206 nm)激光脉冲的C-CUT蓝宝石晶体的非热激光消融,并将结果与传统的IR IR femtsosecond消融进行了比较。出版物涵盖了对消融过程的全面描述,以及与随附的扫描电子显微镜图像一起对各种已达到的形态进行了回顾。我们的发现表明,可以通过特定激光处理参数范围内的单步过程来实现表面粗糙度低于100 nm的有效消融。蓝宝石的消融过程涵盖了强烈的孵化效果,因此脉冲需要紧密地重叠。此外,我们还提供了用于提取表面粗糙度的方法的详细描述,该方法在所有提出的研究中都用于表面粗糙度,并提供了一个实用的框架来表征从不同激光系统获得的消融结果。
在高功率激光材料加工技术中,例如激光焊接、激光熔覆或激光表面处理,调整激光束的空间强度分布(俗称光束整形)可用于优化加工结果,包括加工质量和/或生产率。为了实现动态光束整形(即在加工过程中调整强度分布),光学装置中需要动态光学元件。目前,适合整形单个高功率激光束的动态光学装置是振镜扫描仪和可变形镜。然而,缺乏对这些光束整形装置的光束整形能力(例如分辨率和整形性能)的客观比较。本文提出了一种新颖的数学框架来分析和比较这两种光束整形概念。该框架用于量化光束整形能力,作为相关激光设置参数的函数。接下来,使用该数学框架,模拟振镜扫描仪和可变形镜在瞄准分裂激光束、创建马蹄形强度分布和创建方形均匀分布时的性能。结果表明,实际上,这两种设备都能够在焦平面上创建这三种所需的激光强度分布,与所需的光束形状相比,平均误差也较小。然而,误差分布显示出差异,这是每个单独的光束整形设备的物理限制所特有的。