摘要。在金属材料的定向能量沉积 (DED) 工艺中,线激光增材制造 (WLAM) 的特点是使用激光束熔化金属线并产生焊珠。重叠焊珠的连续沉积产生体积以获得零件。因此,控制焊珠的几何形状对于增材制造工艺至关重要。一些研究工作已经研究了这些几何形状以及主要制造参数对其尺寸的影响,但很少有研究进料方向或线角度的影响。此外,所有关于线角度的研究都是在横向进料和恒定激光方向下进行的。本文重点研究了同轴线进料的沉积头方向对焊珠几何形状的影响,其中有 3 束激光。以相对于水平基板的不同方向进行实验,并使用光学仪器测量外部轮廓,以提取平均轮廓和特征尺寸。结果表明,头部绕其轴线旋转和横向倾斜会影响焊珠的高度、宽度和不对称性。
当前和未来的太空和机载光学仪器面临着巨大的技术和经济挑战,趋向于高度集成。因此,组件和由此产生的子组件的复杂性使增材制造 (AM) 成为一种颠覆性生产的手段。此外,随着性能要求的提高,光学系统变得越来越大,这需要开发新的制造工艺以保证预期的性能。陶瓷材料的另一个非常苛刻和具有挑战性的关键领域是半导体行业。事实上,这些设备的整个制造工艺流程非常激进,需要具有特殊化学、热和电子性能的材料,而只有陶瓷才能满足这些要求。此外,对灵活和复杂形状的需求以及在最近的短缺之后不断增长的搬迁和加速生产的愿望使得 3D 打印成为一种相关的应对措施。因此,我们不难理解为什么航空航天和电子应用代表着未来 10 年 3D 打印陶瓷技术部件最重要的收入机会,预计到 2030 年底将达到约 7.64 亿美元。
HI96803数字葡萄糖折射仪是一种坚固的便携式,防水装置,从Hanna Instruments作为分析仪器制造商的经验中受益。HI96803是一种使用折射率测量的光学仪器,以确定水溶液中的葡萄糖。该方法既简单又快速。样品。在几秒钟内,仪器测量样品的折射率,并通过重量浓度单位将其转换为%。HI96803数字折光仪消除了与机械折射率相关的不确定性,并且很容易用于途中测量。测量技术和温度补偿采用ICUMSA方法书中建议的方法(国际糖分析方法的国际委员会)。温度(在°C或°F中)同时显示大型双层显示屏上的测量以及低功率和其他有用的消息代码的图标。关键功能包括:•双级LCD•自动温度补偿(ATC)•易于设置和存储•使用低功率指示器(BEPS)的电池操作•不使用3分钟后自动关闭。
本卷中的论文是封面和标题页上引用的技术会议的一部分。已选择论文并由编辑和会议计划委员会进行审查。一些会议演讲可能无法发表。其他论文和演示记录可以在Spie Digital Library上的Spiedigitallibrary.org上在线获得。论文反映了作者的工作和思想,并按照提交的本文发表。发布者对信息的有效性或依赖依据所产生的任何结果概不负责。请使用以下格式从这些程序中引用材料:作者,“纸的标题”,在高级材料,航空航天,民用基础设施和运输XVI中的无损特征和监视,由H. Felix Wu,Andrew L. Gyekenyesi,Peter J. Shull,Peter J. Shull,Tzuyyangyue,proc。SPIE 12047,七位数的文章CID编号(DD/mm/yyyy); (doi url)。ISSN:0277-786X ISSN:1996-756X(电子)ISBN:9781510649699 ISBN:9781510649705(电子)由Spie P.O.出版。 框10,贝灵汉,华盛顿98227-0010美国电话+1 360 676 3290(太平洋时间)spie.org版权所有©2022光学仪器工程师协会(SPIE)。 在本书中复制材料,以供内部或个人使用,或者用于内部或个人使用特定客户,超出了美国授予的合理使用规定 版权法由SPIE授权支付费用。 要获得本卷中使用和共享文章的许可,请访问popyright.com的版权清除中心。ISSN:0277-786X ISSN:1996-756X(电子)ISBN:9781510649699 ISBN:9781510649705(电子)由Spie P.O.出版。框10,贝灵汉,华盛顿98227-0010美国电话+1 360 676 3290(太平洋时间)spie.org版权所有©2022光学仪器工程师协会(SPIE)。在本书中复制材料,以供内部或个人使用,或者用于内部或个人使用特定客户,超出了美国授予的合理使用规定版权法由SPIE授权支付费用。要获得本卷中使用和共享文章的许可,请访问popyright.com的版权清除中心。除非出版商的书面许可,否则禁止重新出版,转售,广告或促销或任何形式的系统或多重复制本书中的任何材料。由Curran Associates,Inc。在美国印刷的SPIE许可。
1 浙江大学物理系量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310027 2 清华大学交叉信息研究院量子信息中心,北京 100084 3 阿里巴巴-浙江大学前沿技术联合研究院,杭州 310027 4 浙江大学杭州全球科技创新中心,杭州 311215 5 马里兰大学和 NIST 联合量子研究所及量子信息与计算机科学联合中心,美国马里兰州学院公园市 6 爱荷华州立大学物理与天文系,美国爱荷华州艾姆斯 50011 7 艾姆斯实验室,美国爱荷华州艾姆斯 50011 8 QuEra Computing Inc.,美国马萨诸塞州波士顿 02135 9 科罗拉多矿业学院物理系,美国科罗拉多州戈尔登 80401 10 美国国家标准与技术研究所,科罗拉多州博尔德 80305 11 上海启智研究所,中国上海市徐汇区云锦路 701 号人工智能大厦 41 层 200232
1 北京大学物理学院,介观物理国家重点实验室,北京 100871 2 中国科学院微电子研究所,北京 100029 3 上海交通大学物理与天文学院,新型光通信系统与网络国家重点实验室,上海 200240 4 浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江大学-杭州全球科技创新中心,杭州 310027,中国 5 布里斯托大学 HH Wills 物理实验室和电气电子工程系量子工程技术实验室,BS8 1FD,布里斯托,英国 6 西澳大利亚大学物理系,珀斯 6009,澳大利亚 7 北京大学纳米光电子前沿科学中心和量子物质协同创新中心,北京,100871,中国 8 山西大学极端光学协同创新中心,太原 030006,山西,中国 9 北京大学长三角光电研究所,江苏南通 226010,中国。 10 上述作者对本文贡献相同。电子邮件至:yyang10@ime.ac.cn、xiaoyonghu@pku.edu.cn、qhgong@pku.edu.cn、jww@pku.edu.cn
摘要。我们提出了一项全面的数值研究,对梁导演望远镜的主镜上的热诱导的光差。尤其是我们研究了高功率激光诱导的变形,导致的单色畸变及其对成像和激光聚焦的影响,在共享的孔径束主系统中,原代望远镜镜的性能。作为一个实际的例子,我们考虑了一个基于6×4 kW的单模高功率激光源和具有500 mm圆形透明孔径的主镜。单色畸变的详细组合及其对光学性能的影响是为硼硅酸盐和Zerodur®基材提供的,具有相同的反射涂层,用于电流激光束主管的应用。我们的分析表明,使用Athermal底物(即Zerodur®),高功率激光器可以有效地指向具有高反射性涂层(> 99.9%)的主镜子的成像降解。另一方面,只有在严格控制的环境温度下,具有相对较高的热膨胀系数(即硼硅酸盐)的底物才能有效使用。©2021光学仪器工程师协会(SPIE)[doi:10.1117/1.oe.60.6.6.065102]
摘要。无人驾驶飞行器适用于各种摄影测量和遥感任务。此类平台配备了各种在可见光和红外光谱范围内成像的光电传感器以及热传感器。如今,从低空获取的近红外 (NIR) 图像通常用于制作精准农业等的正射影像图。一个主要问题是使用低成本定制和紧凑型 NIR 相机,广角镜头会引入渐晕。在许多情况下,此类相机会根据照明条件获取低辐射质量图像。本文介绍了一种从定制传感器对低空 NIR 图像数据进行辐射质量评估的方法。该方法利用 NIR 图像的统计分析。用于分析的数据是从不同高度、不同天气和光照条件下获取的。研究结果确定了客观的 NIR 图像质量指数。使用该指数获得的结果可以将图像分为三类:辐射质量好、中等和低。通过分类可以确定所获取图像的先验误差,并评估是否需要重新进行摄影测量飞行。© 2018 光学仪器工程师协会 (SPIE) [DOI:10 .1117/1.JRS.12.015008]
1 福州大学物理与信息工程学院,福建省量子信息与量子光学重点实验室,福建福州 350108 2 日本理化学研究所理论量子物理实验室,日本埼玉县和光市 351-0198 3 日本理化学研究所量子计算中心 (RQC) 量子信息物理理论研究团队,日本埼玉县和光市 351-0198 4 中国科学院物理研究所、北京凝聚态物理国家实验室,北京 100190 5 中国科学院大学中国科学院拓扑量子计算卓越中心,北京 100190 6 华南理工大学物理与光电子学院,广州 510640 7 华南理工大学物理与光电子学院,现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室量子信息交叉学科中心浙江大学物理学系,杭州 310027 8 波兰波兹南亚当密茨凯维奇大学物理学院自旋电子学和量子信息研究所,61-614 9 密歇根大学物理系,密歇根州安娜堡 48109-1040,美国
摘要。提高飞行员的态势感知能力是下一代飞机驾驶舱设计的主要目标。飞行员的窗外视野是一个根本问题,由于恶劣天气、黑暗或飞机结构本身的原因,飞行员的视野经常会变差。解决这个问题的常用方法是通过机载传感器和包含地形和障碍物信息的数据库生成增强的周围环境模型。在直升机领域,环境的图像随后通过面板显示器或透明头戴式显示器呈现给飞行员。我们研究了第三种信息显示方法。这个概念——称为虚拟驾驶舱——应用了非透明头戴式显示器。利用这种虚拟现实显示器,可以结合现有的合成和增强视觉系统的优势,同时克服现有的局限性。除了对优缺点的理论讨论外,还展示了该概念在直升机海上作业中的两个实际实施示例。在基于游戏引擎 Unity 的模拟环境中进行了两项人为因素研究。它们证明了虚拟驾驶舱具有成为未来驾驶舱长期候选方案的普遍潜力。© 2019 光学仪器工程师协会 (SPIE) [DOI:10.1117/1.OE.58.5.051807]