动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。
马歇尔太空飞行中心的 X 射线和低温设备 (XRCF) 是世界上最大的 X 射线光学校准设备,也是 NASA 首屈一指的低温光学测试设备。该设备专为校准钱德拉望远镜而建,曾参与过其他几项 X 射线任务,直到 2005 年才开始专注于低温下的正入射光学测试。最近,该设备的 X 射线测试功能已恢复使用并进行了更新。已添加新的光束监视器、焦平面探测器以及测试物品和仪器定位系统。X 射线数据采集系统已更新。正在开发实时位置监控计量系统,该系统将能够通过发散光束的部分照明校准大直径光学器件。将讨论该设备新扩展的 X 射线测试功能。
近几十年来,半导体行业一直遵循摩尔定律,大约每两年就会将计算能力提升到一个新的水平。然而,随着制造节点演进的减速,被解读为“超越摩尔”的 3D 集成开始展现出延长摩尔定律寿命的潜力。3D 集成不仅针对水平方向的晶体管或芯片集成,而且最重要的是垂直方向的集成,从而形成一种新型半导体芯片,可容纳更高的晶体管密度,随着堆栈超过单层,计算能力将实现巨大飞跃。因此,本期特刊寻求 3D 集成技术的最新进展,包括研究论文、通讯和评论文章,重点关注特定技术,包括但不限于 3D 互连、键合技术、热管理、可靠性、共封装光学器件、集成新材料和设备以及 3D 集成应用。
Edge Autonomy 是为美国国防部、美国联邦民事机构、盟国政府、学术机构和商业实体提供创新自主系统、先进光学器件和弹性能源解决方案的领导者。Edge Autonomy 拥有 34 多年的航空航天工程、先进制造专业知识和先进技术制造历史。Edge Autonomy 成立的愿景是创建一个差异化的无人驾驶和自主平台,该平台采用优先的 UAS/C5ISR 市场趋势,具有高度远征性的产品,结合了尖端技术,规模适当,可以满足重大系统采购的需求。该公司的无人驾驶技术被近 60 个国家的政府、商业和学术客户使用。Edge Autonomy 受益于其垂直整合的运营和全球足迹,主要支持办事处位于俄勒冈州本德和弗吉尼亚州赫恩登。
不同瞄准镜之间的可见亮度差异是由多种因素造成的,但最重要的因素莫过于出瞳。人眼的瞳孔扩张范围从明亮阳光下的约 2 毫米到黑暗中的 7 毫米。为了充分发挥瞄准镜的潜力,出瞳需要与人眼的瞳孔扩张相匹配。10 倍放大倍数下的 40 毫米物镜将具有 4 毫米出瞳,面积为 12.6 平方毫米……非常适合清晨或傍晚拍摄。50 毫米物镜将使出瞳增加到 5 毫米,面积为 19.6 平方毫米。这意味着总光通量增加了 56%。在某些光学器件上,例如固定倍率 4x33mm,出瞳直径超过 8mm……您的眼睛被光线所笼罩,图像异常明亮。因此,大物镜的优势在于,它可以在更高放大倍数下增加出瞳直径。
摘要我们描述了表面电极离子陷阱连接的设计,这是大尺度离子陷阱阵列的关键元素。使用双目标优化方法设计电极,该方法保持了总伪电量曲率,同时最小化沿离子传输路径的轴向伪电势梯度。为了促进在多个陷阱区域中的平行操作的激光束输送,我们在此X结陷阱的每个臂上实现了集成的光学器件。提出了商业铸造制造的陷阱芯片的布局。这项工作建议在可扩展实现中改善离子陷阱连接性能的路线。与集成的光学解决方案一起,这有助于互连的二维阵列中的模块化陷阱离子量子计算。
拓扑光子学为实现更强大的光学器件以抵抗某些缺陷和环境扰动提供了一种有前途的方法。量子逻辑门是量子计算机的基本单元,广泛应用于未来的量子信息处理。因此,构建强大的通用量子逻辑门是实现实用量子计算的重要途径。然而,要解决的最重要的问题是如何构造具有拓扑保护的量子逻辑门所需的 2×2 分束器。本文报道了拓扑保护的反向耦合器的实验实现,该耦合器可用于在硅光子平台上实现量子逻辑门,包括控制非门和阿达玛门。这些量子门不仅具有很高的实验保真度,而且对某些类型的缺陷表现出一定程度的容忍度。这项工作为实用光量子计算和信号处理的发展铺平了道路。
关键词:异质集成、微电子、多芯片封装、氮化镓、共封装光学器件摘要 - 美国国防部 (DoD) 需要以可承受的价格获得先进的微电子器件,以提供应对竞争环境中不断演变的威胁所需的性能。这需要采用最先进 (SOTA) 材料、设备和架构的解决方案。多芯片封装 (MCP) 原型利用异质集成来结合最先进的商用数字和射频 (RF) 技术。国防部专用的芯片集成在有保证的组装、封装和测试设施中。对先进 RF 节点和外延材料的投资提供了对毫米波 (mmW) 频谱的卓越访问,而共封装光学器件 (CPO) 则提供了高效的高带宽数据传输。通过协调供应链投资,国防部寻求实现复合半导体和光子学的真正异质集成,以生产高性能收发器和实现国防系统频谱优势所需的其他子系统。引言 国防部研究与工程部副部长办公室 (OUSD(R&E)) 的可信和保证微电子 (T&AM) 计划正在投资美国微电子领域,为我们的经济和国家安全创造更广泛的竞争力。国家安全任务的技术优势取决于新技术的快速发展和转化为能力,速度更快、成本更低、性能更高、安全性更高。作为一项关键的支持技术,微电子技术对于实现几乎所有现代国防系统的创新产品都至关重要。未来的国防系统依赖于敏捷的战术能力,这些能力可以:整合所有领域和电磁频谱的信息,了解作战环境,做出决策,传播信息。微电子技术对于硬件至关重要,它为国防部提供了对抗对手的超强能力,并使美国在全球商业优势和竞争力中占据优势。尽管微电子技术发挥着关键作用,但在商业需求的推动下,制造和创新生态系统正越来越多地向海外转移。美国
大型红外焦平面、滤光片或冷光学器件,目前使用更重的冷散热器。带有同轴脉冲管和挠性轴承压缩机的超小型、低质量低温冷却器的开发已经超越了之前描述的实验室版本 1,达到了工程模型成熟度。压缩机直接按比例缩小自 Northrup Grumman 的 TRL-9 飞行传统压缩机产品线。1,2,3,4 低温冷却器采用全焊接压缩机、小型轻型战术驱动电子设备和可与集成杜瓦组件接口的飞行式冷头。这种更成熟的冷却器实现在运行时受到随机和正弦振动,并未显示出永久性性能变化。它在剧烈振动下运行,在施加振动时仅表现出微小的性能变化。它已经过热性能测试,结果显示可重复早期开发模型的性能。
图 2。左图:发射的激光脉冲(粗箭头)被导向大气、波长计和光谱仪,用于内部参考测量(LPO:低功率振荡器、PLL:锁相环、SHG:二次谐波生成、THG:三次谐波生成、RLH:参考激光头)。接收到的反向散射信号通过前置光学器件传输,然后由两个不同的光谱仪进行分析。一小部分反向散射信号被引导至 UV 相机以进行共对准(细虚线箭头)。累积电荷耦合器件 (ACCD) 检测入射光子,模拟数字转换器 (ADC) 转换信号。右图:用于 Mie 和 Rayleigh 通道的 ACCD 的简化操作原理。在成像区采集后,信号通过传输行移至存储区。从那里,电荷被推送到读出寄存器,最后推送到 ADC。信号电平按颜色编码,从黑色(无信号)和蓝色(低)到红色(高)。