1 英国南安普敦国家海洋学中心 2 意大利米兰 MetaSensing 3 西班牙巴塞罗那 ICM-CSIC 4 法国布雷斯特 Ifremer 5 德国汉堡 Hereon 6 法国布雷斯特法国能源海洋公司 7 西班牙 Radarmetrics 8 荷兰 ESA-ESTEC 摘要 – 海洋与大气、陆地和冰在多个空间尺度上相互作用,包括在高分辨率光学图像中经常观察到的细亚中尺度。然而,人们对它们的动态知之甚少。SeaSTAR 是一种创新的卫星任务概念,它提议通过以 1 公里分辨率绘制洋流和风矢量来解决这一空白。在本文中,我们介绍了 OSCAR 仪器——SeaSTAR 概念的机载演示器——以及 2022 年 5 月在伊鲁瓦兹海进行的科学活动的首批成果。OSCAR 的功能通过地面真实数据得到展示,初步结果非常有希望。这些结果为使用 OSCAR 作为科学工具提供了大门,以提供千米级海洋和大气动力学的独特 2D 综合视图。关键词:多普勒海洋学、总表面流、风
图2。提高生物相容性的材料策略。(a)左:植入的纳米电螺纹(NET)阵列的微型计算机(CT)扫描在大鼠大脑中,该阵列由八个128通道模块(总数为1,024个通道),高3D密度。紫色立方体突出显示网阵列。右:嵌入皮质组织中的3D NET阵列的原理图。(b)Micro-CT扫描显示了小鼠视觉皮层中8×8×16(1,024通道)的净阵列的体积分布。(a,b)在参考文献[12]的许可下改编。(c)金膜和铂丝酮复合材料的植入物和扫描电子显微照片的光学图像。(d)热图和条形图显示标准化的星形胶质细胞和小胶质细胞密度。(c,d)在参考文献[13]的许可下改编。(e)示意图,显示了纳米导导凝胶(CGS)和MicroCGS的制造。混合了藻酸盐溶液,石墨毡(GFS)和/或碳纳米管(CNT),并立即交联以创建纳米含量(顶部)。当混合溶液为
松下新款 4K 摄像机 HC-X1 具有一系列高端功能和规格,可满足专业 4K 视频制作需求。该型号配备全新设计的紧凑型镜头,具有 24mm 广角和 20 倍光学变焦,以及有效的 1.0 英寸高灵敏度 MOS 传感器。其改进的光学图像稳定器 (OIS) 和高速智能自动对焦功能适合专业摄影工作。HC-X1 支持 4K 24p、UHD 60p/50p、FHD 60p/50p 多格式录制和高清超慢动作。提供两个 SD 存储卡插槽* 1,可实现中继/同步/备份录制,从而提高可靠性,还支持 UHD/FHD* 2 双编解码器录制,以实现更高效的工作流程。 HC-X1 的控制功能(例如三重手动环和用户按钮)以及接口(例如 XLR 输入和有线遥控终端)均经过精心设计,可满足专业视频录制的需求。HC-X1 提供与传统高清手持式摄像机相同水平的灵活性和移动性,为高画质 4K 视频制作提供强大支持。
简介。对计划地形的高保真理解对于准确的表面条件建模是必要的。对于潜在的未来人类和机器人勘探领域,例如即将到来的阿耳emis派任务的候选降落地点。LOLA提供的 1高度测量测量已用于在月球杆附近的Moder-Ate分辨率上开发地形模型,例如2米 /小像素(MPP)。 但是,在许多感兴趣的地区,需要高分辨率的托图。 分析方法,例如形状从阴影(SFS),3,4,以高分辨率光学图像的形式包含上下文信息,例如由月球侦察轨道轨道窄角(LRO NAC)所提供的信息。 sfs将先验的低分辨率DEM作为焦油分辨率的共同注册图像作为输入,其中每个图像都从其他方向从太阳照亮。 这种方法提供了统计保证和输出高分辨率DEM的可解释性,但它们在计算上很昂贵,需要人类输入(例如参数微调)。 因此,适用于大面积很麻烦。 我们实施了基于生成-AI的超分辨率工具,以在月球上开发准确的高分辨率DEM。 尤其是,我们将图像到图像形象的schodinger桥(SB)方法5应用于条件性一代设置,该设置在超分辨率任务中取得了很大的成功。 我们的图像到图像SB Trans-在考虑一组操作图像的同时,形成了向后高分辨率DEM的先验样品(低分辨率DEM)。1高度测量测量已用于在月球杆附近的Moder-Ate分辨率上开发地形模型,例如2米 /小像素(MPP)。但是,在许多感兴趣的地区,需要高分辨率的托图。分析方法,例如形状从阴影(SFS),3,4,以高分辨率光学图像的形式包含上下文信息,例如由月球侦察轨道轨道窄角(LRO NAC)所提供的信息。sfs将先验的低分辨率DEM作为焦油分辨率的共同注册图像作为输入,其中每个图像都从其他方向从太阳照亮。这种方法提供了统计保证和输出高分辨率DEM的可解释性,但它们在计算上很昂贵,需要人类输入(例如参数微调)。因此,适用于大面积很麻烦。我们实施了基于生成-AI的超分辨率工具,以在月球上开发准确的高分辨率DEM。尤其是,我们将图像到图像形象的schodinger桥(SB)方法5应用于条件性一代设置,该设置在超分辨率任务中取得了很大的成功。我们的图像到图像SB Trans-在考虑一组操作图像的同时,形成了向后高分辨率DEM的先验样品(低分辨率DEM)。生成的AI方法具有比分析方法更有效地扩展到更大的输入的潜力,并且可以超越培训数据集。
Panasonic 的新款 4K 摄像机 HC-X1 具有一系列高端功能和规格,可满足专业的 4K 视频制作需求。该型号配备了全新设计的紧凑型镜头,具有 24mm 广角和 20 倍光学变焦,以及有效的 1.0 英寸高灵敏度 MOS 传感器。其改进的光学图像稳定器 (O.I.S.) 和高速智能自动对焦功能非常适合专业摄影工作。HC-X1 支持 4K 24p、UHD 60p/50p、FHD 60p/50p 多格式录制和高清超级慢动作。提供两个 SD 存储卡插槽* 1,可实现中继/同步/备份录制,从而提高可靠性,还支持 UHD/FHD* 2 双编解码器录制,以实现更高效的工作流程。 HC-X1 的控制功能(例如三重手动环和用户按钮)以及接口(例如 XLR 输入和有线遥控终端)均经过精心设计,可满足专业视频录制的需求。HC-X1 提供与传统高清手持式摄像机相同水平的灵活性和移动性,为高画质 4K 视频制作提供强大支持。
摘要:在本文中,对纳米-ZRO 2和聚醚酮2和聚醚酮(PEEK)颗粒填充的聚乙烯(PTFE)复合材料的摩擦学特性通过线性互换式摩擦和磨损实验机进行了摩擦测试。在材料的各个摩擦阶段获得了有关传递局面的摩擦学性能和光学图像的数据。MATLAB软件被用来制定转移胶体形态特征的定量分析程序。该程序可以增强传输图像的图像增强和形态处理,然后识别,提取和量化转移范围的几何和纹理特性,以分析特性的变化及其与材料摩擦学特性的关系的基础。结果表明,转移薄片的几何,形态和质地特征在摩擦过程中动态发展,各种摩擦阶段之间存在明显的差异,并且对材料的摩擦学特性产生了显着影响。定量分析表明,转移仪的某些形态和纹理特征的趋势(覆盖率,面积,直径,圆度,圆度,一致性和纹理熵)与PTFE复合材料的磨损抗性之间存在良好的相关性。因此,这些形态和纹理特征可用于量化转移效果的质量,并用作材料摩擦学特性的间接指标。
摘要:海岸线是重要的地理边界,监测海岸线变化在海岸综合管理中起着重要作用。随着遥感技术的发展,许多研究已经利用光学图像来测量和提取海岸线。然而,一些因素限制了光学成像在海岸线测绘中的应用。考虑到机载激光雷达数据可以提供更精确的地形信息,已经有一些研究使用机载激光雷达来绘制海岸线。然而,尚未进行将机载激光雷达与海岸线测量和提取方法相结合的文献综述。本文的目的是对使用机载激光雷达进行海岸线测绘进行叙述性回顾,包括激光扫描系统、数据可用性以及过去二十年来当前的提取技术。因此,我们进行了广泛的搜索,最终总结了 130 多篇关于机载激光雷达技术用于海岸线测量和海岸线提取的文章。我们发现利用机载 LiDAR 进行海岸线测绘仍面临诸多挑战,例如客观条件限制、数据可用性限制和自身特性限制。目前的海岸线提取方法有很大的改进潜力;特别是当与新兴的当前最先进的 LiDAR 点云处理技术(例如深度学习算法)相结合时,它们将具有巨大的潜力
引言 遥感是一种利用卫星或飞机观察地球表面各种特征的技术。随着太空传感器的进步,遥感已成为探测地球表面各种特征的有效方法。光学红外 (OIR) 遥感主要用于使用 OIR 传感器对地球表面进行成像。然而,OIR 传感器受到阳光可用性和大气条件(如雾霾和云层)干扰的限制。因此,使用微波或雷达遥感对于对地球表面进行成像非常有用。通过合成孔径雷达 (SAR) 系统进行的雷达成像扩展了微波遥感技术在各种应用中的应用。要理解 SAR 图像,需要了解电磁波与地球表面特征相互作用背后的物理现象。SAR 数据处理也不同于光学数据处理,因为它涉及许多信号处理技术。SAR 数据处理使用脉冲压缩技术、线性调频 (LFM) 概念、距离和多普勒信息以及各种其他 SAR 参数。距离-多普勒算法 (RDA) 是一种常用的聚焦 SAR 数据的技术。由于 SAR 是一种测距仪器,因此与光学图像相比,SAR 图像中的几何失真更为普遍。因此,需要使用 SAR 地理定位、地理编码和正射校正技术进行几何校正。SAR 地理定位也与光学传感器有很大不同,因为它使用距离和多普勒方程来对目标进行地理定位。
要测量的光脉冲将投射到缝隙上,并将镜头聚焦于条纹管的光电极上的光学图像中。每次稍微更改时间和空间偏移,四个光脉冲通过缝隙引入并进行到光电阴道上。在这里,光子被转换为与入射光强度成比例的许多电子。四个光脉冲被顺序转换为电子,然后将其加速并向磷光筛进行进行。由于从四个光脉冲中产生的一组电子传递在一对扫地电极之间,因此施加了高压,从而导致高速扫描(电子从顶部到底扫向了方向)。电子在垂直方向的不同时间和略有不同的角度偏转,然后进行到MCP(微通道板)。当电子通过MCP时,它们被乘以数千次,然后在磷光屏幕上轰炸,在那里它们被转换回光。与第一个入射光脉冲相对应的荧光图像位于磷光器屏幕的顶部,其次是其他荧光脉冲,其图像以降序进行。换句话说,磷光屏幕上垂直方向的轴作为颞轴。各种荧光图像的亮度与相应入射光脉冲的强度成正比。在磷光器屏幕上的水平方向上的位置对应于水平方向的入射光位置。
摘要。研究了双极化合成孔径雷达 (SAR) 对光学数据对土地利用分类准确性的贡献。为此,实施了不同的图像融合算法,以在保留光谱信息的同时获得空间改进的图像。为了比较融合技术的性能,使用了微波 X 波段双极化 TerraSAR-X 数据和多光谱 (MS) 光学图像 RapidEye 数据。我们的测试地点 Gediz Basin 覆盖农田和人工建筑。在分类阶段之前,应用了四种数据融合方法:(1) 可调 SAR-MS 融合、(2) Ehlers 融合、(3) 高通滤波和 (4) 贝叶斯数据融合。使用统计分析评估了融合图像的质量。在这方面,我们采用了几种方法进行质量评估。然后,我们还使用支持向量机作为基于核的方法、随机森林作为集成学习方法、基本 k-最近邻和最大似然分类器方法对融合图像的分类性能进行了比较研究。实验为双极化 SAR 数据和光学数据在土地利用/覆盖测绘中的融合提供了有希望的结果。© 作者。由 SPIE 根据 Creative Commons Attribution 3.0 Unported 许可证发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.9.096054]