1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
化学 Natarajan, Srinivasan(生于 1960 年 5 月 27 日)博士,印度科学研究所班加罗尔固态和结构化学部。因其在无机材料化学领域的杰出和持续贡献而获提名,特别是在框架结构化合物的基本理解、确定金属有机骨架 (MOF) 合成的新中间体和途径、研究动力学和热力学因素在其形成中的作用、开创性地将 MOF 用于金属中心发光、溶剂依赖性室温铁电行为、异相催化以及作为陶瓷合成前体、研究锂正极电池材料、无机颜料、新型电催化剂和非线性光学材料,以及在四面体环境中稳定过渡金属离子方面。
1 帕斯卡研究所,PHOTON-N2,克莱蒙奥弗涅大学,法国国家科研中心,SIGMA Clermont,F-63000 克莱蒙费朗,法国。 2 法国大学研究所(IUF),F-75231 巴黎,法国 3 伍尔弗汉普顿大学科学与工程学院,Wulfruna St,伍尔弗汉普顿 WV1 1LY,英国 4 首都师范大学化学系,北京市光学材料与光子器件重点实验室,北京 100048,中国 5 天津市分子光电子科学重点实验室,天津大学理学院化学系,天津化学科学与工程协同创新中心,天津 300072,中国 6 西安交通大学电子信息工程学院,物理电子学与器件教育部重点实验室、陕西省信息光子技术重点实验室,西安 710049,中国
对于非线性光学材料作为有效的宽带Terahertz(THZ)波发电机,在THZ频率范围内具有较大透明度的低吸收器非常重要。在这项研究中,我们报告了有效的有机THZ波发电机,2-(4-羟基霉菌 - 霉菌)-1-甲基喹啉4-溴苯磺酸盐(OHQ-BBS)单晶。有趣的是,OHQ-BBS晶体在THZ频率区域的无分子振动模式范围从1.7到5.1 THz,吸收系数<20 mm-1。通过光学整流使用1300 nm波长的130 FS泵脉冲,OHQ-BBS晶体在1.2-5.5 THz的范围内生成极宽,无凹坑的THZ波。此外,还达到了从广泛使用的Znte无机晶体产生的场高20倍的THZ电场。因此,OHQ-BBS单晶是多个THZ光子应用的高度有希望的材料。
主管主管1主管2姓名Louise Bradley教授Ali K. Yetisen电子邮件地址bradlel@tcd.ie a.yetisen@imperial.ac.ac.ac.uk机构/公司Trinity College伦敦伦敦都柏林帝国帝国学院的每个主管的角色都必须在每个主管和协调中表现出一个能够与Synerg的个人链接;仅机构)都柏林三一学院物理学院Bradley教授将领导光学设计和表征。通过两光子聚合物和制造的3D打印的新材料将与教授合作完成。Florea和Delaney来自三一学院的化学学院。化学工程系Ali K. Yatisen博士是医学诊断中的生化传感器,光学材料和设备的专家。YATISEN博士专门研究实验室纤维设备,用于在远程和实时条件下感测应用。项目主题(选择一个)
增强现实的头戴式显示器(AR-HMD)使用户能够在任何时候和任何位置看到计算机生成的虚拟信息的真实图像,从而使它们对各种应用程序有用。AR-HMD的制造结合了光学工程,光学材料,光涂层,精密制造,电子科学,计算机科学,生理学,人体工程学等的领域。本文主要关注AR-HMD的光学工程。光学组合器和显示器用于结合人眼可见的现实世界和虚拟世界对象。在这篇综述中,用于光学组合机采用的现有AR-HMD光学解决方案分为三类:基于宏观,微型和NanOptics的光学解决方案。随后分析了不同类型的AR-HMD光学解决方案的物理原理,光学结构,性能参数和制造过程。此外,研究和评估了它们的优势和缺点。此外,讨论了AR-HMD光学解决方案的瓶颈和未来发展趋势。
调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调谐光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。
Since the discovery of optical nonlinearities in the 1960s, lithium niobate (LiNbO 3 , or LN) has been the most widely used second-order ( χ (2) ) material, with applications ranging from nonlinear wavelength conversion for classical and quantum light source [1], optical modulators for data communications [2], as well as surface acoustic wave (SAW) based electronic components for mobile phone industry [3]。与其他常见的光子材料相比,LN在非线性和线性光学方面具有许多有利的特性。LN中最大的χ(2)张量分量是对角线对齐的(χ(2)ZZZ),对于非线性波长转换(称为D 33)和电仪调制(r 33),对于非线性波长转换(称为D 33)。作为线性光学材料,LN具有相对较高的普通和非凡的折射率(N O = 2.21,N E = 2.14,在1550 nm处),并且高度