森林流域中野火的频率和严重程度的增加有可能显着影响从这些生态系统中导出的可萃取有机物(WEOM)的数量和质量。这项研究检查了实验室加热土壤中WEOM的光学特性,以了解由于加热而在有机物中发生的物理化学变化,并测试了光学参数在评估中的有用性。WEOM吸光度和荧光光谱形状和强度随着土壤加热温度的函数而系统变化。值得注意的是,吸光度和荧光强度,特定的紫外线吸光度,明显的荧光量子产率,特定的荧光发射强度以及最大的荧光发射波长与加热温度表现出一致的变化,并且表明在加热土壤中的WEOM在分子量和芳香的样品中较低。加热土壤中的较低分子量通过尺寸排斥色谱测量来证实。这项工作增加了野火对WEOM发生的分子变化的理解,并表明光学测量(即吸光度和荧光)可用于水分监测火后自动生成有机物。
极化在光 - 物质相互作用中起着至关重要的作用。因此,其整体操作是解锁光线制造能力的重要关键,尤其是在飞秒激光直接写作中。现有的偏振技术仅着眼于光束横向的操作,即二维对照。在本文中,我们提出了一种新颖的被动策略,该策略利用了一类飞秒激光的书面空间变化的双向元素,以沿光路沿光路塑造极化状态。作为演示,我们生成了一个三维结构化贝塞尔束,其线性极化状态正在沿焦点缓慢演变(典型。60)。这样的“螺旋极化”贝塞尔束允许在SIO 2中印刷“扭曲的纳米射击”,从而在微米尺度上产生外在的光学手性,该刻度具有高光学旋转。我们的工作为三维极化操作带来了新的观点,并将在结构化的光线,轻度互动和手性装置制造中找到应用。
摘要。这项研究研究了MGTIO 3钙钛矿材料的电子,光学和结构特性,无论是纯还是掺杂氮(N)和磷(P)等元素。调查利用了WIER2K代码中实现的GGA-MBJ近似值的密度功能理论(DFT)。结果表明,在具有y(n和p)的氧气位置,掺杂mgtio 3的带隙能显着低于纯MGTIO 3的带隙能量,其带隙为2.933 eV。,特别是在n和p的情况下,频带间隙降至1.74和0.65 eV,此外,费米能(EF)水平在P型半导体(SC)中向价带(VB)移动。此外,我们已经分析了这些系统的光学特性,包括它们的介电函数(εଵ和εଶ),光导率(𝜎),吸收系数(α)和折射率(n)。此外,用n和p掺杂会增加可见光光谱中的吸收,这在光照下会提高光催化活性,因为掺杂的材料的价和传导带更容易地产生氢。上面的发现表明,这些材料具有广泛的应用,包括光电设备的创建。
摘要:本文研究了轴向施加电场下圆柱形量子点结构的电子学与光学特性,选取四种不同的轴向双曲型势。考虑了一个位置相关的有效质量模型,在求解特征值微分方程时既考虑了有效质量在轴向随约束势变化的平滑变化,也考虑了其在径向的突变。特征值方程的计算同时考虑了狄利克雷条件(零通量)和开边界条件(非零通量),在垂直于施加电场方向的平面内实现,这保证了本文结果对于具有极高寿命的准稳态的有效性。采用对角化法结合有限元法,找到了圆柱形量子点中约束电子的特征值和特征函数。用于求解微分方程的数值策略使我们能够克服异质结构边界平面和圆柱面相交区域中边界条件存在的多个问题。为了计算线性和三阶非线性光学吸收系数以及折射率的相对变化,我们使用了密度矩阵展开中的两级方法。我们的结果表明,通过改变结构参数(例如轴向电位的宽度和深度以及电场强度),可以调整所关注结构的电子特性和光学特性,以获得适合特定研究或目标的响应。
最近关于氮掺杂的hydettium hydetium hydetium hydetium the近期近气条件超导性的报道启发了大量的实验研究,结果矛盾。我们从第一个原理模拟了所报道的超导体可能的母体结构的物理特性,即luh 2和luh 3。我们表明,只有LUH 3的声子条带结构才能解释由于间质八面体位点存在氢而导致的拉曼光谱。但是,这种结构仅通过超过6 GPA的非谐调稳定。我们发现,在报告的超导体中,引人入胜的颜色变化与LUH 2的光学特性一致,LUH 2的光学特性是由未抑制式频带间等离子体的存在确定的。具有压力的等离子体蓝光,并修饰样品的颜色,而无需任何结构相变。我们的发现表明实验中的主要成分是luh 2,在八面体部位有一些额外的氢原子。在高温下,luh 2和luh 3均未3个超导。
钙钛矿太阳能电池 (PSC) 具有低成本、高效率太阳能的潜力,但它们对水分的敏感性限制了实际应用。目前的制造需要受控环境,限制了大规模生产。研究人员的目标是开发在环境条件下寿命更长的稳定 PSC。在这项研究中,我们研究了在自然空气中使用四种不同的反溶剂(甲苯、乙酸乙酯、乙醚和氯苯)制造和退火的钙钛矿薄膜和太阳能电池的稳定性。薄膜(厚度约 300 纳米)通过单步旋涂沉积,并在环境空气中放置长达 30 天。我们监测了结晶度、电性能和光学随时间的变化。结果表明,薄膜的结晶度、形态和电光性能逐渐下降。值得注意的是,用乙酸乙酯制成的薄膜与其他溶剂相比表现出更好的稳定性。这些发现有助于推进在正常环境条件下制造的稳定高性能 PSC。此外,我们还讨论了未来工作方向中可能采用的机器学习(ML)方法来优化材料结构和合成工艺参数,以实现未来高效的钙钛矿太阳能电池的制造。
7。Patil Bhagyashri Madhukar“使用CBD方法的Fe2O3薄膜的准备和光学特性” 8。patil prajakta dipak“ Fe2O3薄膜的合成和光学特性” 9。Patil Puja Ravindra“ CBD方法的Fe2O3薄膜的合成” 10。patil rajnandini vilas“通过通量法对CD的合成和表征” 11。Sonawane Ashwini Gokul“ PBS薄膜的合成和光学特性” 12。thakare ujjwala pradip“ PBS薄膜的合成和光学特性” 13。Borse Sakshi Kailas“ Go Pani和Go-Pani复合材料的合成和表征” 14。Mahajan Shubham Dinesh“ Go Pani和Go-Pani综合的合成和表征”
摘要:本文报道了一种简单廉价的湿化学法合成 Fe/Cr 共掺杂氧化铜纳米粒子的详细方法。用溶胶-凝胶化学法制备的纯 CuO 纳米粒子和 Fe、Cr 取代的 CuO 纳米粒子适合工业应用。初步的 X 射线衍射和 Rietveld 细化研究表明,该纳米粒子具有纯晶体性质,单斜晶体具有 C2/c 相。根据 Scherrer 公式计算的平均晶粒尺寸为 21nm 量级,进一步的观察表明,随着浓度的增加,晶体尺寸增加。扫描电子显微镜 (SEM) 图像显示粒子在 20-30nm 范围内。拉曼光谱研究表明,掺杂 Cr 和 Fe 的 CuO 纳米粒子中存在分子团。
摘要。大气环境监测卫星 (AEMS),也称为大旗一号或 DQ-1,于 2022 年 4 月发射;其主要有效载荷之一是高光谱分辨率激光雷达 (HSRL) 系统。这个新系统能够精确测量全球气溶胶的光学特性,在云气溶胶激光雷达和红外探路者卫星观测 (CALIPSO) 卫星退役后,可用于地球科学界。开发合适的检索算法并验证检索结果是必要的。本研究展示了一种使用 DQ-1 HSRL 系统的气溶胶光学特性检索算法。该方法检索了气溶胶的线性去极化率、后向散射系数、消光系数和光学深度。为了验证目的,我们将检索到的结果与通过 CALIPSO 获得的结果进行了比较。结果表明,两组数据的曲线高度一致,DQ-1 的信噪比 (SNR) 有所提高。美国国家航空航天局 (NASA) 微脉冲激光雷达网络 (MPLNET) 站的光学特性曲线被选中与 DQ-1 测量值进行验证,相对误差为 25%。2022 年 6 月至 2022 年 12 月期间,使用 DQ-1 卫星和 AErosol RObotic NETwork (AERONET) 进行的气溶胶光学深度测量进行了关联,得出的 R 2 值等于 0.803。我们使用 DQ-1 数据集初步研究了撒哈拉沙尘和南大西洋的输送过程
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。