•问题和知识差距:公共可访问的高温下的稀疏光学特性数据集•解决方案:开发可靠的光谱技术来测量辐射特性(辐射和发射),以达到最高1000°C的温度以及作为环境条件的功能(惰性和脱离)。•提供了两个研究实验室的反射率和发射的实验数据集的独立验证•开发和共享一个数字数据库,具有测量的辐射特性和与Gen3 CSP相关的精选材料的标准化实验程序
摘要:Monte Carlo(MC)是研究散射媒体中光子迁移的强大工具,但很耗时以解决反问题。为了加快MC模拟的速度,可以将缩放关系应用于现有的初始MC模拟,以生成具有不同光学属性的新数据集。我们命名了这种方法基于轨迹,因为它使用了初始MC模拟的检测到的光子轨迹的知识,这与基于较慢的光子方法相反,在这种方法中,新型MC模拟具有新的光学特性。我们研究了缩放关系的收敛性和适用性限制,这两者都与所考虑的轨迹样本也代表了新的光学特性有关。为了吸收吸收,缩放关系包含平滑收敛的兰伯特啤酒因子,而对于散射,它是两个快速分化因子的乘积,其比例很容易达到十个数量级。我们通过研究给定长度的轨迹中的散射事件数量来研究这种不稳定。我们根据记录的轨迹中的最小最大散射事件进行了散射缩放关系的收敛测试。我们还研究了MC模拟对光学性质的依赖性,这在反问题中最关键,发现散射衍生物归因于小泊松分布的散射事件分布的小偏差。本文也可以用作教程,有助于理解比例关系的物理学与其局限性的原因,并制定了应对它们的新策略。
摘要:最近出现了一个有前途的技术平台,通过使用亚波长纳米索子的二维阵列在纳米级构造材料,从而提供了对光的前所未有的控制。这些元信息具有非凡的光学特性,可以在成像,传感,电信和与能量相关的领域中进行多种应用。跨曲面的一个重要优势在于它们通过精确地设计纳米架阵列的几何形状和材料组成来操纵光谱的能力。因此,它们具有有效的太阳能收获和转换的巨大潜力。在这篇综述中,我们根据元信息介绍了太阳能转换设备的当前最新面积。首先,我们概述了太阳能转化中涉及的基本过程,以及对元时间的主要类别的介绍,即等离子体和介电元信息。随后,我们探讨了使用的数值工具来指导元信息的设计,特别关注促进优化光学响应的逆设计方法。为了展示元时间的实际应用,我们介绍了跨各个领域的选定示例,例如光伏,光电化学,光催化,太阳热和光热路线以及辐射冷却。这些例子强调了可以利用跨度额来利用太阳能的方式。关键字:元时间,质膜,介电,太阳能转换,逆设计,光学响应通过量化元信息的光学特性,可以预期在太阳能收集技术中取得重大进步,从而提供新的实用解决方案来支持新兴的可持续社会。
纳米技术越来越多地用于抗癌治疗,从而提高了治疗有效性,同时最大程度地减少了不良影响。无机纳米颗粒(INP)是普遍的纳米载体,适用于广泛的抗癌应用,包括治疗剂,成像,靶向药物递送和治疗学,因为它们具有优质的生物相容性,独特的光学特性,独特的光学特性以及通过多功能表面功能化修饰的能力。在过去的几十年中,在这个新兴的免疫治疗领域中,INP的高适应性使它们成为肿瘤免疫疗法和联合免疫疗法的良好携带者选择。肿瘤免疫疗法需要针对肿瘤位置或免疫器官的免疫调节疗法的靶向输送,以引起免疫细胞并诱导肿瘤特异性免疫反应,同时调节免疫稳态,尤其是切换肿瘤免疫抑制微抑制微环境。本评论探讨了各种INP设计和配方,以及它们在肿瘤免疫疗法和联合免疫疗法中的就业。我们还引入了利用表面工程策略来创建多功能INP的详细演示。生成的INP证明了刺激和增强免疫反应,特定靶向以及调节癌细胞,免疫细胞及其常驻微环境的能力,有时以及成像和跟踪能力,暗示它们在多任务中的免疫疗法中的潜力。此外,我们讨论了肿瘤治疗中基于INP的组合免疫疗法的承诺。
在十九世纪和20世纪,当物理学家开始研究光的光学特性时,玻璃制造商的知识就被使用了。物理学家可以使用彩色玻璃来滤除所选的光波长。为了优化实验,他们开始自己生产玻璃,从而导致了重要的见解。他们了解到的一件事是,一种物质可能会导致颜色完全不同的玻璃。例如,硒化镉和硫化镉的混合物可以使玻璃变成黄色或红色 - 它取决于熔融玻璃的加热以及如何冷却。最终,他们还能够证明颜色来自玻璃内形成的颗粒,颜色取决于颗粒的大小。
引导能量流和纳米晶体发色团混合组件中产生的激发态的性质对于实现它们的光催化和光电应用至关重要。通过结合稳态和时间分辨的吸收和光致发光 (PL) 实验,我们探测了 CsPbBr 3 -罗丹明 B (RhB) 混合组件中的激发态相互作用。PL 研究表明,CsPbBr 3 发射猝灭,同时 RhB 荧光增强,表明存在单线态能量转移机制。瞬态吸收光谱表明这种能量转移发生在 ~ 200 ps 的时间尺度上。为了了解能量转移是通过 Förster 还是 Dexter 机制发生的,我们利用简便的卤化物交换反应通过与氯化物合金化来调整供体 CsPbBr 3 的光学特性。这样,我们便可以调节供体 CsPb(Br 1-x Cl x ) 3 发射和受体 RhB 吸收之间的光谱重叠。对于 CsPbBr 3 - RhB,能量转移速率常数 (k ET ) 与 Förster 理论非常吻合,而与氯化物合金化以产生富含氯化物的 CsPb(Br 1-x Cl x ) 3 则更利于 Dexter 机制。这些结果凸显了优化供体和受体特性对于设计采用能量转移的光收集组件的重要性。通过纳米晶体供体的卤化物交换可以轻松调节光学特性,这为研究和定制钙钛矿发色团组件中的激发态相互作用提供了独特的平台。
MSE 601 材料科学与工程概论。(3) 本课程旨在为研究生提供材料科学与工程领域的一般背景知识。基本主题包括材料中的化学键、晶体结构和缺陷、扩散和相图。将在加工历史和应用的背景下讨论材料的机械、电气和光学特性。将介绍材料的各向异性特性及其张量表示等重要概念。本课程涵盖主要材料系统(金属、陶瓷、聚合物、复合材料和电子材料),并提供材料在一系列技术领域的应用示例。先决条件:化学工程或材料科学与工程研究生学历,或经讲师同意。
Opti 475a/575a:薄膜光学和光子学教授:罗伯特·A·诺伍德教授,怀特光学科学学院,533室,实验室506 520-626-0936; rnorwood@optics.arizona.edu讲座:TBD办公时间:通过预约先决条件:本科或研究生的物理光学课程(Opti 330或Opti 505R)课程说明:薄膜光学对从眼睛磨损到激光到激光到静态的广泛应用至关重要。该课程将涵盖薄膜的光学特性,多层光涂层的设计,准确的计算方法,用于薄膜生长的物理机制以及薄膜涂层的关键光学器件和光子素应用。课程目标:
M. Vanmathi A,,A。PriyaA,M。S. Tahir A,Sahir A,M。S. Razakh a,M。M. Senthil Kumar B,*,R。Indrajit C,R。Indrajit C,V。Elango D,G。Senguttuvan E,R v. Mangalaraja f。泰米尔纳德邦,印度-600 048 B机械工程学院,Vellore技术研究所,钦奈,泰米尔纳德邦,泰米尔纳德邦,印度-600 127 c物理系印度纳杜(NADU),600 089 E物理学系,安娜大学蒂鲁奇拉帕利大学工程学院毒性。进一步的金属掺杂可改变电导率,电气和光学特性。在这项研究中,使用喷雾热解技术进行了SN掺杂TIO 2的沉积。通过使用Hall效应技术获得了电性能,并通过X射线衍射和EDAX扫描电子显微镜分析膜的结构特性。X射线衍射的结果表明,通过喷雾热解沉积的薄膜是多晶的多晶,在(002)场的方向上优先取向。SEM分析表现出通过喷雾热解沉积的薄膜的膜结构。使用HALL效应技术获得了电导率的结果。(2024年6月7日收到; 2024年9月26日接受)关键词:二氧化钛(TIO 2),X射线衍射,扫描电子显微镜(SEM),Hall效果1。今天的引言,众所周知,大多数半导体使用二氧化钛纳米颗粒[1]。TiO 2在传感器[2],抗菌剂[3],氢[4],照片催化剂[5]和水蒸发[6]中找到了其应用。tio 2以其良好的光学特性,廉价,无毒和化学稳定而闻名。
关键字:极化,心脏病发作,肌节,各向异性直接极化显微镜使A型磁盘能够双向射线折射[1]并评估心肌细胞收缩的状态,从而使肌原纤维肉瘤可视化。已经确定,在呼吸道或心脏骤停的条件下,器官和组织的病理变化发生不同[2]。因此,这项研究的目的是评估在两个根本不同的急性条件下与心脏氧气供应不足相关的急性疾病。通过Zeiss Axio Imager进行了极化图像和非极化图像的比较分析。A1(德国Carl Zeiss)具有和不具有极化系统的显微镜。 由于心肌的各向异性现象,观察到光学特性,例如双折射。 这使我们能够可视化肌膜的成分,因为磁盘具有异质性和独特的光学特性。 在我们的实验中,我们使用了lambda(相)板来提高图像的质量进行分析。 我们计算了整个肉瘤的长度和A和我的磁盘,然后使用Origin Pro软件(OriginLab,USA)对数据进行了统计分析。 在使用ANOVA通过非参数分析检查分布的正态性后,评估了测量结果。 对心肌细胞的极化特性的研究表明,肉皮长度在呼吸停滞和心脏骤停期间显着降低。A1(德国Carl Zeiss)具有和不具有极化系统的显微镜。由于心肌的各向异性现象,观察到光学特性,例如双折射。这使我们能够可视化肌膜的成分,因为磁盘具有异质性和独特的光学特性。在我们的实验中,我们使用了lambda(相)板来提高图像的质量进行分析。我们计算了整个肉瘤的长度和A和我的磁盘,然后使用Origin Pro软件(OriginLab,USA)对数据进行了统计分析。在使用ANOVA通过非参数分析检查分布的正态性后,评估了测量结果。对心肌细胞的极化特性的研究表明,肉皮长度在呼吸停滞和心脏骤停期间显着降低。根据这些数据,我们与确定相关和确定系数的确定以及构建阶阶3的多项式模型的相关性和回归分析,并构建了描述所获得数据的依赖方程。我们研究了未染色的心脏切片的极化图像和非极化图像,以及用苏木精和曙红,碱性富氏素和李染色方法染色的切片。正常情况下的中位肌节长度为1.86(1.79; 1.92)μm,呼吸停滞中的1.77(1.66; 1.82)μm,心脏骤停中的1.77(1.66; 1.82)μm。I-DISC的大小在实验组中也减小。对照组中位的各向同性盘长度为0.56(0.45; 0.65)μm和0.44(0.38; 0.57)μm,用于呼吸停滞,而对心脏骤停的中位数为0.25(0.22; 0.22; 0.22; 0.22; 0.22; 0.26; 0.26; 0.26)μm。同时,所有组中值的a磁盘并不以显着差异的存在为特征。这项研究表明,在与缺氧相关的各种病理过程的发展过程中,A磁盘和I-Disk Saromere参数之间的相关程度大大降低。与急性心脏骤停的实验中,椎间盘长度之间的关系显着较低,与急性呼吸停滞相比,这可以表征为更快的心肌损伤过程,这可能与循环滞留,快速血液脱氧和明显的心肌缺血发展有关。