摘要:有效的能量转移对于电磁通信至关重要。因此,生产一个实现宽带的波导耦合器,非反射传输是一项艰巨的任务。随着基于硅的集成光子电路的发展,芯片耦合变得越来越重要。尽管已经开发出各种用于芯片耦合的辅助器,但它们通常具有限制,例如长耦合长度,低耦合效率和狭窄的带宽。这是由于无法消除两个波导之间的反射。在这里,我们介绍了一种使用通用阻抗匹配理论和转换光学的方法,以消除两个波导之间的反射。使用此方法的耦合器称为通用阻抗匹配的耦合器,具有最短的次波长耦合长度,99.9%的耦合效率和宽带宽度。
图2。从复杂媒体社区中常用的工具的代表性进步,以应对大脑光学探测中的挑战。(a)深度:使用计算技术的散射和像差补偿,以通过活小鼠脑114中的头骨增强皮质髓磷脂的反射成像。之前:通过小鼠头骨的常规反射显微镜。左图:之后:计算偶联的自适应光学校正后的反射显微镜通过头骨在小鼠脑中的皮质髓磷脂。右图:通过头骨重建无标签结构信息的3D重建。比例尺:40μm。(b)速度:快速3D体积成像,具有标记为钙指示剂(GCAMP6F)的小鼠皮层中的神经元的靶向照明,以增加记录的神经元的信号。以前:用电透镜和反卷积后提取的痕迹的常规容积钙成像。之后:靶向的体积钙成像和反卷积30后提取的痕迹。比例尺50μm。(c)生物相容性:上图:增强信号给定相同的激光功率,由自适应光学功能启用54。之前:海马中荧光标记的神经元的低信噪比背景约1 mm深度通过常规的三光子荧光显微镜经经经经颅的1 mm深度成像。之后:自适应光学元件成像的海马中的高信噪比神经元。比例尺:20μm。比例尺:30μm。右:异常校正的相模式。较低面板:使用基于多模纤维的内窥镜结合使用遗传编码的钙指示剂GCAMP6标记的深层皮层神经元的脑成像,并结合了波前形状,用于微创成像115。(d)视场:与没有结合的计算自适应光学元件相比,计算共轭自适应光学元件(以后)启用了具有衍射限制的高分辨率成像的视野扩大场,而没有共轭(之前,白盒之前)114左:左:髓磷脂的图像。SLM:空间灯调制器,DMD:数字微旋转设备,MMF:多模纤维。面板(a)根据CC-BY 4.0的CC-114改编。面板(b)根据CC-BY 4.0的CC-BY 30改编。面板(c)改编自参考文献54的顶部图像和根据许可证CC-BY 4.0改编的Ref 115的底部图像。面板(D)根据许可证CC-BY 4.0改编的参考文献114。
与激光相关的诺贝尔奖因其在开创性研究领域的应用而被授予,就像2023年一样。激光器与13-14个物理奖密切相关,涉及新发现,发明或研究方法。列表很长,包括光纤,光纤镊子,频率梳,FEM化学研究以及与被困颗粒有关的研究。激光器在检测引力波和全息图中也起着至关重要的作用。2023年奖项适合这个有力的系列。Pierre Agostini,Ferenc Krausz和Anne L'Huillier的奖品和作品展示了最先进的激光技术如何使极端非线性光学和授权物的出现以及AttoSecond科学如何触发现已用于医学诊断研究或半科学研究的革命光源的发展。
对于所有申请,请通过xilehu@gmail.com将您的候选人资格发送给Hu教授。请包括简历,研究兴趣以及两个参考提供者的姓名。在大量申请中,我们只能回复那些将进一步考虑缩放或现场面试的人。在这种情况下,如果您在初次申请后的2周内没有收到我的消息,请假设您的申请被拒绝。请注意,不符合上述要求的申请(例如,必要的学术背景)将不会回答。
使用自动燃烧的溶胶 - 凝胶方法合成镍铝(NIAL 2 O 4)纳米颗粒。制备的纳米颗粒分为四个部分,并在700、900、1100和1300℃时钙化,并进行了本研究。使用粉末X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDS),傅立叶变换和红外(FT-IR)光谱镜(FT-IR)光谱和UV-VIS光谱技术来表征吸收的纳米颗粒。X射线衍射模式证实了尖晶石结构和FD3M空间组。Scherrer公式用于计算结晶石尺寸,并在5.78至20.55 nm的范围内发现,而晶格参数的范围为8.039至8.342Å。在142.80至187.37 nm的范围内发现平均晶粒尺寸,而间间距的范围为2.100至2.479Å。FTIR光谱显示在400至3450 cm -1的范围内显示了六个吸收带,并确认了尖晶石结构。光条间隙(E G)随钙化温度降低,并在4.2129-4.3115EV范围内发现。关键字:镍铝制纳米颗粒; Sol-Gel自动燃烧法;钙化温度;结晶石尺寸;粒度;元素分析; IR和UV-VIS光谱PACS:75.50.GG,61.05.cp,68.37.hk,78.40.fy,33.20.ea,42.70.qs
OSE 6445 (3 Credits) Time: Tuesday, Thursday 3:00-4:15 Place: CREOL A214 Instructor: P. J. Delfyett, CREOL A-231, (407) 823-6812, delfyett@creol.ucf.edu Office Hours : Open door policy or from 1:30-3:00pm Tuesdays and Thursdays; RM A-231还可以,如果我有空,可以随时安排缩放会议。网络课程:每个学生都必须在课程的第一周结束前完成网络课程的作业。课程目标:让学生在开发和使用picsecond and flstsecond Photonic Technologies进行科学和商业应用的领域中熟练理解最先进的技术文献(即科学期刊出版物)。学生的学习成果:成功的学生将能够在分析和计算上分析超短脉冲传播,生成,测量系统。课程描述:入门概念(以下是了解超快光信号的生成,传输,检测和操纵所需的必要基本数量)。
主动模式锁定:在腔中插入一个电流晶体,该电源晶体以等于激光器模式的频率F下调节介质变速器。最初具有随机相的激光振荡振荡的模式。作用于频率n模式的调制会在频率V+F和N -F下生成侧带,非常接近相邻模式的侧带。几乎退化的振荡器(一种模式和相邻的侧带)是因为它们与相同的放大介质相互作用。的频率非常接近,他们倾向于锁定相位并统一打败。此锁定通过侧频带生成扩展到许多相邻模式。这种同步机制首先是由Huygens观察到的:两个振荡后的两个频率几乎相同的摆和相同的壁锁。在时间域中分析,光传输的调制充当一个栅极,该栅极定期打开并有利于光同步脉冲的传播,并在镜子之间的往返时间内进行往返时间。
在通信,量子科学和激光物理学中扮演着重要角色,量子非线性光学器件是越来越重要的领域。本书提出了对领域量化的独立处理,并涵盖了诸如字段,相位空间表示的规范形式,以及线性和非线性媒体中电动动力学量化的包含问题。从经典非线性光学器件的摘要开始,然后详细解释了量子非线性光学系统及其应用,光学纤维中的量子和经典噪声源的计算技术,以及非线性光学在量子信息科学中的应用。通过章节结束练习和针对不同系统的申请的详细示例补充,这本书是研究生和非线性光学,凝结物理学,量子信息和原子物理学的研究生和研究人员的宝贵资源。假定量子力学和经典电动力学的坚实基础,但不需要对非线性光学的知识。
摘要 — 神经形态计算被誉为现有和新兴数据处理应用的游戏规则改变者。朝着这个方向,人工神经网络实现已成为研究的重点。将神经网络推进到光学领域具有多种优势,例如在飞行时间推理延迟下具有高数据吞吐量。本研究提出了相干突触互连作为通往无滤波器神经网络的途径,具有更高的路由灵活性。实验研究并评估了具有集成称重功能的相干突触受体,用于 1 GHz 130 ps 宽尖峰序列。通过使用光学注入锁定本地振荡器来实现零差检测,同时利用其相位和共积分光电二极管的响应度在接收传入的光尖峰时实现可调权重。此外,还显示了检测权重的符号切换,支持将突触分配扩展到波长和时间维度的可行性。索引词——光信号检测、神经网络硬件、电吸收调制激光器、神经形态学
量子计算利用量子比特的量子现象(叠加和纠缠)执行复杂的计算任务 [4]。在过去的几十年中,各种各样的量子比特已经被实现,包括超导量子比特 [2],[5],半导体量子点 [6],[7] 和捕获离子量子比特 [8]。在上述量子比特中,捕获离子量子比特因其在量子纠缠中的高保真度而备受关注,因为捕获离子本质上是相同的 [9]。为了将捕获离子量子比特应用于量子计算设备,霍尼韦尔将 QCCD(量子电荷耦合器件)架构实现到可编程捕获离子量子计算机中。在 QCCD 中,捕获离子量子计算机可以通过将离子阱与用于量子比特光学寻址的光电元件集成到一个紧凑的独立设备中来实现。据报道,QCCD 实现了 2 4 的量子体积测量,并且几乎不存在串扰 [10]。
