摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
特定作物生产或“处方耕作”是一种管理技术,其中除草剂和肥料等投入物的施用率根据土壤和农学特性的空间差异而变化。量化这些空间差异的数据可以通过密集采样和随后的实验室分析来收集,但为了获得最高效率,最好通过能够在田间进行分析的自动化仪器来获取这些数据。光谱反射率测量提供了一种估计田间土壤特性的可能方法。研究人员已经将土壤特性与可见光和近红外 (NIR) 反射率数据相关联(Dalal 和 Henry,1986 年;Gaultney 等人,1989 年;Gunsaulis 等人,1991 年;Henderson 等人,1989 年;Krishnan 等人,1980 年;和 Schreier,1977 年)。 Sudduth 和 Hummel (1991) 评估了可见光和近红外反射数据,以估计 TIlinoissoils 的有机物含量。通过偏最小二乘回归分析的近红外数据为 30 种土壤在枯萎点和田间持水量水平下提供了最佳相关性(r2= 0.92,预测标准误差为 0.34% 有机物)。使用的反射数据为 1720-2380 nm,间距和带宽为 60 nm,总共 12 个反射点。本文介绍了坚固耐用的便携式近红外光谱仪的设计、开发和评估
使用气体滤波器相关法,由旋转气体滤波器生成的参考信号与浓度无关。该气体滤波器是一个微型单元,在高分压下充满了测量组分。来自光束源的光的测量气体光谱被气体滤波器消除。通过将空的滤光轮光圈旋转到光束路径中,可获得与浓度相关的测量信号。在两次测量期间,在第二个滤波器上旋转额外的干涉滤光片可以将光谱范围限制在测量组分的吸收带上。消光和其他信号处理的计算通过单光束双波长法进行。
使用气体滤波器相关法,由旋转气体滤波器生成的参考信号与浓度无关。该气体滤波器是一个微型单元,在高分压下充满了测量组分。来自光束源的光的测量气体光谱被气体滤波器消除。通过将空的滤光轮光圈旋转到光束路径中,可获得与浓度相关的测量信号。在两次测量期间,在第二个滤波器上旋转额外的干涉滤光片可以将光谱范围限制在测量组分的吸收带上。消光和其他信号处理的计算通过单光束双波长法进行。
使用气体滤波器相关法,由旋转气体滤波器生成的参考信号与浓度无关。该气体滤波器是一个微型单元,在高分压下充满了测量组分。来自光束源的光的测量气体光谱被气体滤波器消除。通过将空的滤光轮光圈旋转到光束路径中,可获得与浓度相关的测量信号。在两次测量期间,在第二个滤波器上旋转额外的干涉滤光片可以将光谱范围限制在测量组分的吸收带上。消光和其他信号处理的计算通过单光束双波长法进行。
使用气体滤波器相关法,由旋转气体滤波器生成的参考信号与浓度无关。该气体滤波器是一个微型单元,在高分压下充满了测量组分。来自光束源的光的测量气体光谱被气体滤波器消除。通过将空的滤光轮光圈旋转到光束路径中,可获得与浓度相关的测量信号。在两次测量期间,在第二个滤波器上旋转额外的干涉滤光片可以将光谱范围限制在测量组分的吸收带上。消光和其他信号处理的计算通过单光束双波长法进行。
使用气体滤波器相关方法,由旋转气体滤波器产生的参考信号与浓度无关。该气体滤波器是一个在高分压下充满测量成分的微型单元。来自光束源的光的测量气体光谱被气体滤波器消除。通过将空的滤光轮光圈旋转到光束路径中,可获得与浓度相关的测量信号。在两次测量期间,将附加干涉滤光片旋转到第二个滤光片上,可以限制测量成分吸收带上的光谱范围。消光和其他信号处理的计算由单光束双波长法进行。
本出版物“按原样”提供,不作任何形式的保证。DIONEX CORPORATION 不对本出版物的使用或使用结果的正确性、准确性、可靠性、时效性或其他方面提供任何明示或暗示的保证或陈述。此外,DIONEX CORPORATION 保留修订本出版物和不时更改其内容的权利,DIONEX CORPORATION 没有义务通知任何个人或组织此类修订或更改。
5.1 前面板控件和指示器(见图 5.1)....................................................... 20 电源开启...................................................................................................... 20 火焰开启...................................................................................................... 20 空白...................................................................................................... 20 灵敏度细调和粗调...................................................................................... 20 燃料............................................................................................................. 20 Na、K、Li ...................................................................................................... 20 小数............................................................................................................. 20 功率 0/1 ...................................................................................................... 20