马来西亚技术大学的电信研究与创新中心(CERTI),马来西亚技术大学,Hang tuah Jaya,76100单榴莲,马来西亚,马来西亚,马来西亚马来西亚,马来西亚大学,Hung Tuah Jaya,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia(1) Bhd。 554,Jalan Waja 5,Taman Industri Waja 2,09000 Kulim Kedah Darul Aman(2)电气,电子和系统工程系,马来西亚大学工程和建筑环境学院,马来西亚大学,43600 UKM BANGI,MALAYSIA,MALAYSIA,MALAYSIA(3) 0000-0002-1864-1952 doi:10.15199/48.2023.01.01使用IoT监视摘要的双轴太阳能跟踪系统的开发和评估。 阳光和热量是我们地球的天然来源,我们可以使用各种不断变化的技术,包括太阳热和人造光合作用。 可再生能源的太阳能是重要的电力来源。 太阳能跟踪器的函数可最大程度地减少升高和光伏面板之间的入射角。 这些机制随着太阳最大化的能量吸收而改变了它们的方向。 与固定角度系统相比,太阳能跟踪器野生增加了太阳能。 在任何太阳系中,随着太阳穿过天空的最佳角度,转移效率通过连续调整跟踪系统而提高。 该项目使用Arduino Uno提出了太阳能跟踪系统的开发,从而使面板可以通过四个LDR朝着阳光的高强度移动。 压力。 它使用云快速传输数据。马来西亚技术大学的电信研究与创新中心(CERTI),马来西亚技术大学,Hang tuah Jaya,76100单榴莲,马来西亚,马来西亚,马来西亚马来西亚,马来西亚大学,Hung Tuah Jaya,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia,Malaysia(1) Bhd。 554,Jalan Waja 5,Taman Industri Waja 2,09000 Kulim Kedah Darul Aman(2)电气,电子和系统工程系,马来西亚大学工程和建筑环境学院,马来西亚大学,43600 UKM BANGI,MALAYSIA,MALAYSIA,MALAYSIA(3)0000-0002-1864-1952 doi:10.15199/48.2023.01.01使用IoT监视摘要的双轴太阳能跟踪系统的开发和评估。阳光和热量是我们地球的天然来源,我们可以使用各种不断变化的技术,包括太阳热和人造光合作用。可再生能源的太阳能是重要的电力来源。太阳能跟踪器的函数可最大程度地减少升高和光伏面板之间的入射角。这些机制随着太阳最大化的能量吸收而改变了它们的方向。与固定角度系统相比,太阳能跟踪器野生增加了太阳能。在任何太阳系中,随着太阳穿过天空的最佳角度,转移效率通过连续调整跟踪系统而提高。该项目使用Arduino Uno提出了太阳能跟踪系统的开发,从而使面板可以通过四个LDR朝着阳光的高强度移动。压力。它使用云快速传输数据。在此跟踪系统中,在太阳能参数的实时数据中实现了监视系统,并使用事物使用WEMOS D1 R2的对缺陷的实时数据来影响其缺陷。结果表明,跟踪系统的效率比单轴系统高55.38%。监视系统对于实时分析太阳能电池板组件环境因素是实用的。阳光和热量是我们土地上的自然来源,我们可以在其中使用各种不断变化的技术,包括太阳能和人工光合作用。可再生能源的太阳能是重要的电力来源。太阳能跟踪器的功能最小化了落光和光伏面板之间的入射角。这些机制在太阳最大化能量吸收时改变了它们的方向。与固定角度系统相比,太阳追踪器会增加太阳能。在每个太阳系中,由于太阳穿过天空时的最佳角度跟踪系统的持续调整,转移效率会提高。该项目使用Arduino Uno提出了太阳跟踪系统的开发,使面板能够通过四个LDR向高阳光移动。在这个真实的时间跟踪系统数据中实现了有关太阳能参数的数据以及使用与Wemos D1 R2合作的Thing Speak平台影响其缺陷的因素的数据。两个来源都需要大面积和更多的原材料来产生电力。结果表明,跟踪系统的容量比单轴系统高55.38%。监视系统对于太阳能电池板组件的环境因素的真实时间分析是实用的。(Development and assessment of the two-axle solar energy tracking system with data monitoring and OT) Keywords: dual-axis, solar tracking, IoT keywords: two-axis solar energy tracking system, IoT Introduction Solar Energy is a significant source of electricity from renewable energy sources as it is easy to use, Readily, Readily Available, and inexpensive as been used in [1-4].如今,除了利用化石燃料或大坝发电外,世界还面临着能源不足。 其他替代能源可以强调为太阳能,风和核等电力。 污染大气的能量是最有利的可再生能源。 太阳能跟踪系统可以跟踪太阳并产生电能。 有两个基本跟踪器类别:一个轴和一个双轴。 双轴跟踪系统具有两个轴自由,水平和垂直。 双轴太阳能跟踪器是太阳能电池板根据太阳的运动移动并整天获得辐射。 [5]中的preethi g设计了太阳能跟踪系统,该系统使用两个LDR传感器和一个伺服电动机来检测阳光,从而使太阳能电池板朝着阳光下移动。 实时监视系统使用与Arduino端口相关的LabView系统。 太阳能电池板数据,例如在LabView中测量和图形表示的电压,电流和光强度。如今,除了利用化石燃料或大坝发电外,世界还面临着能源不足。其他替代能源可以强调为太阳能,风和核等电力。污染大气的能量是最有利的可再生能源。太阳能跟踪系统可以跟踪太阳并产生电能。有两个基本跟踪器类别:一个轴和一个双轴。双轴跟踪系统具有两个轴自由,水平和垂直。双轴太阳能跟踪器是太阳能电池板根据太阳的运动移动并整天获得辐射。[5]中的preethi g设计了太阳能跟踪系统,该系统使用两个LDR传感器和一个伺服电动机来检测阳光,从而使太阳能电池板朝着阳光下移动。实时监视系统使用与Arduino端口相关的LabView系统。太阳能电池板数据,例如在LabView中测量和图形表示的电压,电流和光强度。太阳能系统的性能是使用Labview前面板的辐照度与时间图,针对时间图的电压以及电流对时间图测量的。此设计的缺点是使用LabView在需要与串行通信端口连接的地方使用。这使得该项目无法从远处监视
罗素·福斯特(Russell Foster):例如,在抑郁症中,往往发生的是睡眠和昼夜节律在抑郁发作之前被中断。这是即将到来的精神健康状况不佳的一个很好的预测指标,并且还证明了中年的睡眠和昼夜节律破坏可能是后来几年痴呆症的危险因素。Luann Heinen:那是牛津大学Nuffield实验室主任Russell Foster,Nuffield实验室的负责人和昼夜神经科学研究所。 他的职业生涯致力于加深我们对睡眠和24小时昼夜节律的理解,并运用这些知识来改善健康和生活质量。 他的研究发现及其含义在他的书《生命时间:身体时钟的新科学》中分享,以及它如何彻底改变您的睡眠和健康。 我是卢安·海南(Luann Heinen),这是健康播客的业务组,与专家就雇主面临的最相关的健康和福祉问题进行对话。 今天,罗素·福斯特(Russell Foster)和我就昼夜节律进行了广泛的对话,包括我们饮食,运动和服用药物的时机如何改变健康结果,以及影响昼夜节律以使其对更好或更糟的因素,以及这一研究领域对我们所有人的含义,包括医疗专业人员和公众。 今天的情节由Daytwo赞助,Daytwo是一种使用世界上最先进的专有微生物组科学的精确营养解决方案。 Russell,欢迎加入健康播客业务集团。 罗素·福斯特(Russell Foster):我非常高兴加入您。 卢安。 我们跟踪它。Luann Heinen:那是牛津大学Nuffield实验室主任Russell Foster,Nuffield实验室的负责人和昼夜神经科学研究所。他的职业生涯致力于加深我们对睡眠和24小时昼夜节律的理解,并运用这些知识来改善健康和生活质量。他的研究发现及其含义在他的书《生命时间:身体时钟的新科学》中分享,以及它如何彻底改变您的睡眠和健康。我是卢安·海南(Luann Heinen),这是健康播客的业务组,与专家就雇主面临的最相关的健康和福祉问题进行对话。今天,罗素·福斯特(Russell Foster)和我就昼夜节律进行了广泛的对话,包括我们饮食,运动和服用药物的时机如何改变健康结果,以及影响昼夜节律以使其对更好或更糟的因素,以及这一研究领域对我们所有人的含义,包括医疗专业人员和公众。今天的情节由Daytwo赞助,Daytwo是一种使用世界上最先进的专有微生物组科学的精确营养解决方案。Russell,欢迎加入健康播客业务集团。 罗素·福斯特(Russell Foster):我非常高兴加入您。 卢安。 我们跟踪它。Russell,欢迎加入健康播客业务集团。罗素·福斯特(Russell Foster):我非常高兴加入您。卢安。我们跟踪它。利用食物作为改善新陈代谢状况和整体健康状况,Daytwo使用个人的肠道微生物组数据来预测血糖反应,并在第一次叮咬之前为每种食物分配个性化分数,从而有助于以很大的结果进行小调整。luann Heinen:睡眠在人们的雷达上非常重要。人们将其视为健康和福祉的优先事项。我们担心数量和质量。以及睡眠与昼夜节律之间的关系不一定完全理解。我们知道昼夜节律有些广泛。昼夜节律到底是什么?罗素·福斯特(Russell Foster):从本质上讲,您可以将昼夜节律视为一天的内部生物学代表。我们确实有一个大约24小时的内部时钟,我们用它来调整生物学的各个方面。如果您考虑一下,为了使我们的生物学运作,我们需要以正确的浓度的正确浓度,并在正确的时间送到正确的组织和器官。是昼夜节律系统,在时间,当然也可以在身体的空间内为您提供这种奇妙的结构。我们为什么需要它?好吧,我们生活在一个非常复杂的世界中。我们在一个每24小时旋转一次的星球上。基本上所有生命在地球上的响应都必须适应光强度和温度以及所有其余的巨大变化。许多生物在活跃或夜幕降临的基础上已经分裂了地球,而这些都非常不同。因此,我们必须具有非常非常不同的生物学才能适应意识,对我们来说,唤醒状态或睡眠,这当然是一个非常不同的状态,需要不同的代谢,这是大脑某些特定区域的大脑活动水平。是昼夜节律为您提供这个时机。luann Heinen:您已经写了一本关于这个主题的精彩书籍,并且您说我们每个人都需要将内部时钟与外部世界保持一致。我们将如何做到这一点?
使用FNIRS测量值的基于内存的工作负载分类已被证明是现实的适应性BCI的理想方法,用于测量人类工作量水平。6在本文中,我们研究了与n个背任务不同条件相对应的FNIR的分类问题(即需要受试者连续记住最后的n∈F1; 2; 2; 3; 3; :: g快速变化的字母或数字)。我们在前额叶皮层(PFC)上进行了FNIRS测量,已发现这是通过正电子发射断层扫描和功能磁共振成像的与记忆相关任务的相关区域。7,8文献中的大多数n返还分类研究基于对fnirs信号的监督方法,并基于主题内部(即,在单个主题的数据获取的一次试验中)。9 - 11虽然这些研究表现出令人鼓舞的结果,但对于可以适应具有广泛生理条件的不同用户的界面系统而言,受试者和会话依赖的系统是不现实的。为了在BCI中使用,必须基于经验会议(会话逐句对齐)和跨主题(主题对准)基于FNIRS数据的工作负载分类。存在一些挑战,可以使用FNIRS数据妨碍精确的工作负载分类。我们在下面概述了它们,并提出了减轻它们的方法。第一个挑战是本文的主要重点,是处理n-back任务分类的逐项和主题变化。这些问题与机器学习中所谓的域适应性有关。12 - 14更具体地说,来自不同会话或不同主题的数据称为属于不同域,并且跨不同域(数据属于的会话或主题)的数据分布的变化被视为域移动。15由于这种现象,我们从一个领域学到的知识不能直接应用于另一个领域。为了解决这个问题,最佳运输理论和方法的最新进展(OT)16和度量测量空间比对17 - 19可用于将数据与已知标记的n个返回条件从一个会话或一个主题到同一主题或其他主题中的另一个会话的未标记的数据与未标记的数据对齐。尽管已将OT应用于具有潜在性能的域适应性,但是20,21当不存在两个空间之间的有意义的距离概念时,但是两组用于对齐的数据不共享相同的度量空间时,它会受到一定的限制。例如,对于会话逐一比对,由于信噪比较差(SNR),从两个会话中删除了一些FNIRS通道的数据。这将导致两个会话的数据嵌入两个域中的不同维度。幼稚的解决方案是从另一个会话中删除相应的通道,以确保两个会话具有相同的维度。但是,这是导致信息丧失的缺点。第二个挑战是FNIRS信号中的运动伪像。fnirs中的运动伪影通常是由于实验过程中头皮中任何源或检测器的耦合变化。31在本文中,我们提出,使用Gromov - Wasserstein(G-W)18,22和Fused Gromov - Wasserstein(FG-W)Barycenter 23将减轻此问题,并为FNIRS n-BACK任务分类的范围跨域提供算法。这会导致突然增加或减少测得的光强度,并可能影响测得的FNIRS信号。从机器学习的角度来看,运动伪影检测和校正有助于消除主题行为(抽搐,头部移动等)的任何误导性相关性分类模型从FNIRS数据中学到了什么。例如,分类模型可以识别当受试者由于受试者的头部移动而在测量信号中检测到测量信号中的峰值时,将受试者按下按钮作为需求,而不是从脑信号中检测实际的血液动力学反应。已提出了许多方法,灵感来自统计信号处理方法,例如自适应过滤,独立组件分析(ICA)和时频分析,以删除或纠正FNIRS信号中的运动伪影。24 - 30这些技术中的大多数都取决于使用辅助参考信号(例如,加速度计等)或自相间通道,或需要对运动伪影特征和清洁的FNIRS信号的特征进行某些假设。在本文中,我们使用基于稀疏优化的现成方法来自动检测和去除尖峰和台阶异常,即瞬时伪影还原算法(TARA)。
上下文。原月球磁盘中尘埃的表征对于更好地理解形成行星的组成和这些系统中的尘埃颗粒演化很重要。目标。我们的目的是通过分析VLT/Sphere的Zimpl和Irdis子仪器,通过分析Zimpl和Irdis子仪器获得的多波长度散射光强度和极化图像,以准确表征面对面过渡磁盘中灰尘的性质。方法。我们从ESO档案中使用了RX J1604的档案数据,并仔细纠正了仪器效应的极化信号,还考虑了星际极化。我们测量了r,j和h频段中的方位角极化qφ(r)的磁盘的径向曲线,并由于视力和其他效果而描述了我们数据中数据中的变化。,我们通过将数据与观测值的点扩散函数进行比较,从而得出了磁盘,质量Qφ(r)的固有极性分析。我们还测量了磁盘强度,i磁盘(R),并为J和H带的参考星差成像。这为r,j和h频段提供了磁盘集成的极化强度ˆqφ / i⋆,以及对于j和h频段的平均分数极化,平均分数极化。我们研究了散射光和恒星附近的热尘产生的阴影的方位角依赖性。最终将衍生的结果与模型计算进行了比较,以限制RX J1604中反射粉尘的散射特性。结果。92±0。RX J1604是北斗源,数据显示出不同种类的可变性。然而,对重复调查的详细分析表明,结果不受浸入事件或大气看差异的影响。我们得出了固有极化强度ˆqφ(r) / i⋆的精确径向磁盘轮廓,并由于灰尘不透明度的波长依赖性而测量不同频段的不同轮廓半径。磁盘集成的极化为ˆqφ / i = 0。04%的R频段和1。 51±0。 j频段为11%,表明磁盘的极化反射率的红色。 磁盘的强度是i磁盘 / i = 3。 9±0。 在J频段中为5%,而J带的分数极化为⟨ˆpφ⟩= 38±4%,H频段为42±2%。 与Rx J1604的IR多余的比较产生了大约λI≈0的明显磁盘反照率。 16±0。 08。 我们还发现,在R频段数据中看到的先前描述的阴影可能受到校准误差的影响。 我们使用用于过渡磁盘的尘埃散射模型得出,近似于散射反照率ω≈0的J带值。 5,散射不对称g≈0。 5,并散射极化P最大≈0。 7粉尘。 结论。 RX J1604的明亮磁盘具有非常简单的轴对称结构,因此非常适合作为基准对象,用于精确的光极化测量。 我们得出了磁盘极化的值,⟨ˆpφ⟩和明显的磁盘反照率λi,用于J频段。04%的R频段和1。51±0。j频段为11%,表明磁盘的极化反射率的红色。磁盘的强度是i磁盘 / i = 3。9±0。在J频段中为5%,而J带的分数极化为⟨ˆpφ⟩= 38±4%,H频段为42±2%。与Rx J1604的IR多余的比较产生了大约λI≈0的明显磁盘反照率。16±0。08。我们还发现,在R频段数据中看到的先前描述的阴影可能受到校准误差的影响。我们使用用于过渡磁盘的尘埃散射模型得出,近似于散射反照率ω≈0的J带值。5,散射不对称g≈0。5,并散射极化P最大≈0。7粉尘。结论。RX J1604的明亮磁盘具有非常简单的轴对称结构,因此非常适合作为基准对象,用于精确的光极化测量。我们得出了磁盘极化的值,⟨ˆpφ⟩和明显的磁盘反照率λi,用于J频段。因为⟨ˆpφ⟩和λI主要取决于灰尘散射参数,而仅弱于磁盘几何形状,因此这些参数定义了ω和p max之间以及ω和g之间的灰尘散射参数的紧密关系。偏光反射率的正r到J带颜色(量qφ / i⋆)j≈1。64·(ˆqφ / i⋆)r,主要是由于尘埃参数的波长依赖性的结果,因为预计散射几何形状对于不同颜色的散射几何形状非常相似。这项工作证明了对于确定灰尘散射参数的准确光偏光测量的潜力,该测量强烈限制了灰尘的物理特性。
生物传感器由于其众多好处,包括低成本,快速响应和高灵敏度,变得越来越有价值。要开发创新的生物传感器,除了常规专业之外,还需要跨学科的工作。本文提供了生物传感器的概述,并探讨了其工作原理和应用程序。生物传感器通过产生与分析物的吸收成正比的信号来测量生物学或化学反应。“生物传感器”一词是“生物”和“传感器”的组合。它由换能器和生物元素(例如酶或抗体)组成,该酶或抗体与分析物相互作用并产生电信号。生物传感器用于各种应用,包括疾病监测,药物发现,污染物检测等。生物传感器的设计通常包括分析物,生物感受器,换能器,电子设备和显示等组件。生物传感器使用信号转导将生物学变化作为电信号,结合了传感器和生物传感元件。这包括具有信号调节单元(SCU),微控制器/处理器和显示单元的电子电路。生物传感器分类为诸如在声音振动原理上工作的压电传感器等类型,并在机械施加时会产生电信号。这些传感器将机械振动更改为比例电信号。另一种类型是电化学传感器,它们在探测面上覆盖着生物分子,响应检测到的化合物并产生电信号。电化学传感器使用不同的传感器,例如安培,障碍物和电位计量学,将化学数据更改为可测量的信号。光学生物传感器涉及光纤,这些光纤检测基于吸收,散射或荧光等光特性的传感元件。这些传感器使用抗体,抗原,核酸,受体,组织和全细胞等生物学材料产生与分析物浓度成比例的信号。光学生物传感器提供实时,无标签和直接检测具有益处,较小的成本,敏感性和高特异性的化学和生物学物质。高级概念,例如微电子,MEMS,分子生物学,纳米或微技术,生物技术和化学,用于实施新的光学生物传感器。此外,生物传感器可以与微控制器连接,以监测由化学变化或不当储存条件引起的食物污染。使用生物传感器来监测食品质量并预防食物传播疾病食物传播疾病是由病毒和细菌引起的,导致几种类型的食物传播疾病。为了防止这种情况,必须设计系统以识别食品质量和新鲜度。该系统利用电气传感器和生物传感器,生物传感器在检测食品样品中的细菌污染中起关键作用。系统使用湿度,温度和光传感器等传感器监视食物。高温可以增加食物变质的风险,而高湿度水平可能会影响某些类型的食物的质量。食物阈值值设置为确定何时宠坏食物,考虑到湿度,温度和光线等因素。光在保存食物质量方面起着至关重要的作用,因为光线不足会导致变质。该系统还检查了从食物中发出的气体以检测变质的水平。使用气体传感器测量气体水平的数量,并转换为模拟值以在物联网平台上显示。所提出的系统由几个组件组成,包括电源单元(PSU),Wi-Fi调制解调器,Arduino微控制器,光依赖性电阻器(LDR),气体传感器,数字温度和湿度传感器(DTH11)和液晶显示器(LCDS)。Arduino Uno板使用带有14个数字I/O引脚,6个PWM输出和6个模拟输入的Microchip Atmega328p微控制器。该系统利用物联网来监视影响食物存储的环境因素,从而实现任何设备的实时数据传输。ESP8266模块连接到Arduino板和Wi-Fi路由器,在字符LCD上显示传感器数据。传感器测量温度(0-50°C)和相对湿度(20-95%),每两秒钟将数据传输到Internet。系统将传感器数据收集并将其转换为字符串,然后将其显示在LCD上。生物传感器的特征包括选择性,可重复性,稳定性,灵敏度和线性性。选择性使其可以在污染物中感知特定的分析物。可重现性可确保重复实验中的一致响应。线性表示响应直线信号的精度。稳定性受环境因素的影响,而灵敏度决定了检测到的分析物的最小量。生物传感器提供了快速,连续的测量,校准的最小试剂要求,快速响应时间以及检测非极性分子的能力。它可以通过将生物学信号转换为电子测量来检测人体内部危险的生物学剂或化学物质。这项技术负担得起,精确,小,生物相容性和可靠。但是,生物传感器的局限性,包括对某些目标的敏感性相对较差,提供了半定量或定性结果。增强检测极限需要进一步发展。放大生物信号的努力集中在增强其力量上。生物传感器的应用包括医疗测试,检测病原体以及通过追踪气体或污染物来监测水质。它们也用于生物浮雕技术,安全系统以及跟踪人体中的葡萄糖水平。此外,在农业和生物技术中应用生物传感器连续监测化学特性。在食品工业中,他们检测抗生素,农药,维生素和脂肪酸的水平。生物传感器是生物分析系统,通过将其信号转换为可计算的响应来识别生物样品。这些传感器是可以分析生物样品以识别其结构,组成和功能的强大设备。他们通过将生物信号转换为电响应来做到这一点。生物识别传感器是[插入定义或链接]。在医学和健康领域,生物传感器在检测生物学信号中发挥了重要作用。本教程将探讨生物传感器的概念,其工作原理,不同类型和常见应用。更深入研究之前,让我们回顾一下传感器的基础知识。传感器是一种检测体温或光强度等物理量变化并将其转换为可测量数量的设备。例如,根据环境光强度,光依赖性电阻(LDR)改变其电阻。同样,生物传感器将生物信号转换为电信号。本质上,生物传感器是一种分析装置,可检测生物学过程的变化并将其转化为电信号。在我们通过本教程前进时,必须了解生物信号的概念。生物传感器将生物传感元件与换能器结合在一起,以将数据转换为电信号。该系统由带有信号调节单元,处理器或微控制器的电子电路和显示单元组成。简化的框图显示了重要组件,包括用于信号调节的放大器和过滤器。生物传感器的原理涉及使用酶作为生物材料。一种电酶方法将酶通过换能器转化为电信号,通常通过氧化酶。此过程改变了生物材料的pH,影响了与测得的酶有关的酶的当前承载能力。传感器的输出是一个电信号,可以是电流或电压,具体取决于所使用的酶的类型。如果是电流,则需要使用基于操作AMP的转换器将其转换为等效电压。然后将所得的电压信号放大并通过低通RC滤波器过滤,以删除高频噪声。输出模拟信号表示要测量的生物学数量,可以直接显示或传递给微控制器进行数字转换。生物传感器的一个常见示例是糖仪,它通过在测试带上收集样品并将其转换为电信号来测量血糖水平。为了分析葡萄糖水平,传感器使用电酶方法,其中葡萄糖的氧化发生在含有触发和参考电极的测试带上。应用血液时,化学反应会产生与葡萄糖浓度成比例的电流。血糖仪具有处理器,转换器,放大器,过滤器和显示单元。生物传感器分为两组:用于实施分析或转导方法中的生物元素。常见的生物学元素包括DNA,酶,抗体,微生物,组织和细胞受体。生物传感器也可以根据所使用的转导类型进行分类:基于质量的,光学和电化学。基于质量的生物传感器包括压电生物传感器,它们将机械振动转换为电信号。生物分子附着在压电传感器的表面上。电化学生物传感器使用探测表面,其感应分子反应产生与测量量成比例的电信号。可以使用各种换能器,例如电位测量,安培计量学和受损。光学生物传感器利用光纤来检测由于折射率变化而引起的光吸收,散射或荧光等光特性的变化。例如,与金属层结合的抗体会导致培养基折射率的变化。注意:原始文本已维护,并且没有对其内容进行重大更改。光学生物传感器具有非电信性质,使它们能够通过改变光波长在单层上分析多个元素。生物传感器在1950年代初期开发以来,生物传感器在医学,临床分析和健康监测方面至关重要。他们提供了比基于实验室的设备的几个优点:尺寸小,低成本,快速效果和易用性。生物传感器还发现了在工业加工,农业,食品加工,污染控制等领域的应用。关键领域包括医学,临床诊断,环境监测,工业过程,食品工业和农业实践。在医学和诊断中,生物传感器用于监测葡萄糖水平和乳酸,商业生物传感器在自我监测的血糖中流行。这些设备提供未稀释的样品,以获得准确的结果和可重复使用的传感器,以改善患者护理。通过监测细菌和细胞培养,这有助于最大程度地降低成本和风险。环境监测是生物传感器的另一个重要应用,尤其是在水污染检测中具有很大优势。生物传感器可以检测硝酸盐和磷酸盐,有助于对抗地下水污染并确保安全的饮用水质量。在工业应用中,生物传感器用于监测乳制品,酒精生产和类似行业的发酵过程。食品工业还利用生物传感器来测量碳水化合物,酸,酒精和其他物质来控制食品质量。一些常见的例子包括葡萄酒,啤酒,酸奶,软饮料等。最后,农业在各种实践中使用生物传感器,例如作物管理,土壤分析和动物健康监测。农药通常是农业环境中的重要工具,主要用于检测其存在。
生态工具的有效JAMB准备生态工具研究笔记是由专家策划的全面资源,可提供有关基本JAMB考试主题的深入信息。这些笔记有助于有效的准备,使学习者能够快速掌握复杂的主题,并轻松修改重要点。通过利用这些资源,个人可以增强对关键概念的理解并优化其学习过程。生态仪器的关键特征研究材料提供了广泛的特征,包括:样本论文和评估进度和识别弱地区的问题。练习问题涵盖了整个教学大纲,以确保全面准备。上一年的问题论文和分析,以使学生熟悉考试格式和难度水平。针对性实践和改进的特定于主题的问题库。通过利用生态仪器笔记来解锁生态仪器的成功,JAMB有抱负者可以:对关键概念和主题有详细的理解。访问考试教学大纲和推荐的研究材料的宝贵见解。就其准备策略做出明智的决定。通过专注于弱领域并完善知识来提高其绩效。利用Edurev应用程序的功能Edurev App提供了其他研究材料,包括上一年的问题论文,教学大纲和重要问题。生态学家依靠各种工具有效地执行工作。注射仪记录影响生态系统的风速,尤其是在开放区域。这个全面的平台使学生可以从任何地方获取宝贵的资源,增强他们的学习经验,并最终为他们在JAMB考试中的成功做出贡献。从简单的现场指南到高科技设备,这些工具有助于收集数据并详细观察生态系统。相机陷阱提供了有关野生动植物行为和人口规模的重要信息,使生态学家可以监测生物多样性而无需干扰动物。Quadrats用于研究植物的分布和密度,而田间指南可实现准确的物种鉴定。无人机为生态系统提供了独特的观点,为栖息地变化和相互联系提供了见解。GIS软件可帮助生态学家了解物种和环境之间的空间关系,从而为保护策略提供信息。pH仪表测量土壤和水酸度,对于评估生态系统健康和检测污染至关重要。射程遥测设备跟踪动物运动和生存率,从而阐明了野生动植物行为和栖息地偏好。动物移动的地方以及生态学家为何就栖息地保护和脆弱物种的生存做出明智的决定对于理解生态系统至关重要。生态学家使用诸如扫网之类的工具来捕获昆虫,从而有助于评估人口动态并确定生态系统的健康。昆虫在其他野生动植物的授粉,分解和食物来源中起着至关重要的作用。水文学传感器监测水质和流量,而光仪测量对植物生长必不可少的阳光水平。非生物和生物因子相互作用以创建独特的生态系统。生态学家利用各种工具,包括双筒望远镜,无人机,Quadrats,GPS设备,氧气仪,光度计,雨量计,温度计,温度计,气压计,Secchi碟片等,收集数据并了解环境。生态学家研究人群,检查大小,密度,分散模式,年龄结构和性别比等特征。所使用的三种主要研究方法是观察,建模和实验。为了测量非生物因素,生态学家采用了诸如温度计(温度),轻度仪表(光强度),pH仪(土壤pH)和土壤水分表(水分)等工具。非生物因素包括物理和化学条件,例如热,盐度,压力,光,风和pH。均匀分散体的例子包括分泌毒素抑制附近生长的植物。野生动植物经理使用四种方法估算人口规模:总数,不完整计数,间接计数和标记捕获方法。生态学研究可用于将疾病率与医疗保健的使用相关联,表明随着时间的推移死亡率变化或比较地区之间的疾病患病率。生态学家在五个层面上工作:生物,种群,社区,生态系统和生物圈。非生物因素的例子包括温度,光,水(陆地),盐度和洋流(海洋)。土壤pH是一个非生物因素,因为它主要由与分解的植物和动物混合的小岩石颗粒组成。生态学在丰富我们的世界和确保人类的福祉和繁荣方面起着至关重要的作用。通过检查pH值,我们可以更好地理解影响生态系统的非生物因素。它有助于我们了解人们与自然之间的复杂联系,这对于粮食生产至关重要,维持清洁的空气和水以及在气候变化中保护生物多样性。人口分布模式可以分为三种类型:均匀,随机或结块。聚集是当个人聚集在一起时发生的,这是一种在植物中看到的一种常见现象,如橡树,将种子直接掉落到地面,或者生活在学校或牛群中的动物或诸如鱼或大象之类的群。描述性研究是描述与人,地点和时间等因素相关的疾病模式的观察研究方法。这些研究通常是对新主题,事件,疾病或状况的初步研究,为进一步的探索提供了基础。
如何将您的日常生活转变为家庭的可再生能源 • 科学博览会项目创意的科学方法 • 在家节约能源的好主意 • 地热能让您脚下就有热能 • 将垃圾转化为气体:生物质能 • 利用微生物燃料电池将泥浆转化为能量 • 利用水来工作:利用水力发电提升负载 • 燃料电池 — 为未来提供燃料! • 生物柴油:将石油转化为清洁燃料 • 使用 LED 照明节约能源 • 燃烧生物燃料:比较不可再生和可再生燃料 • 科学博览会项目创意的科学方法 世界人口的增长意味着对能源的需求增加,这使得能源生产成为一个复杂的话题,人们争论不休的是化石燃料还是清洁可再生能源。科学家和工程师正在应对制造和储存能源的挑战。与此同时,学生们正在寻找可以通过建造来学习的项目,特别是与电气工程 (EEE) 相关的项目。一些流行的想法包括: * 家庭自动化系统:通过蓝牙连接电器并可通过移动应用远程控制的项目。该系统还可以根据用户需求进行编程,以自动开启/关闭。 * 太阳能和智能能源系统:该项目专注于开发基于太阳能的电池充电器,为智能交通照明系统供电。这有助于学习太阳能技术的基础知识。这些项目适合希望构建有助于他们未来职业生涯的优秀项目的 EEE 学生。它们提供了修改和创新的空间,使其成为小型或大型电气工程项目的理想选择。这个电气项目让您可以学习和构建可再生能源领域的小型或大型工程项目。它涉及 4 个关键组件:太阳能电池板、红外传感器、微控制器和 LED。查看太阳能和智能能源项目详情并试用免费演示。另一个令人兴奋的项目是使用物联网的智能灌溉系统,它应用物联网 (IoT) 技术来监测土壤湿度水平并自动打开水泵。它还通过电子邮件发送用户更新。该系统需要 4 个主要组件:土壤湿度传感器、Arduino Uno、WiFi 模块和水泵。查看智能灌溉项目详情并试用免费演示。此外,Animatronics Hand 项目利用机电一体化技术来模拟手部运动,可以使用 Flux 传感器、Arduino Uno 和伺服电机构建。最后,使用 IoT 的天气监测系统是物联网 (IoT) 技术的另一个应用,需要 5 个关键组件:DHT11 传感器、WiFi 模块、NodeMCU、LCD 显示器和电源。到 2020 年,预计将有 10 亿台设备使用该技术连接到互联网。为了更好地理解它,您可以从事利用该技术的项目。其中一个项目是构建一个温度和湿度传感器设备,该设备根据用户定义的阈值远程发送更新。您需要三个主要组件:DHT 传感器、Arduino Uno 和 WiFi 模块。另一个电气项目想法是通过构建自动太阳能跟踪系统来提高太阳能的效率。该设备可以自动调整其方向以最大限度地提高阳光的能量输出。使用固定的太阳能电池板,该跟踪系统可产生 40% 以上的能量。您需要四个主要组件:太阳能电池板、LDR 传感器、Arduino 开发板和直流电机。此外,您还可以构建一个可以通过人类手势控制的机械臂。该项目涉及使用 ADXL 加速度计传感器来检测手势,使用 Arduino Uno 作为大脑,并使用伺服电机来控制单个手臂运动。最后,考虑使用 PIR 传感器开发智能照明系统。该设备可检测人类的存在并相应地控制照明。它还可以编程为根据占用水平打开/关闭电器。您需要三个主要组件:PIR 传感器、Arduino 开发板和继电器模块。查看这些项目的详细信息并试用免费演示!检测人类存在并连接到系统微控制器充当大脑,处理来自传感器的数据继电器驱动器将电压转换为电源灯查看智能照明项目详情并试用演示使用 GSM 的智能电能表:监测能源消耗对工业至关重要。获取的数据有助于采取必要的措施来节约能源。这个电气项目开发了一种监测能耗的设备,可以集成到任何行业中。当能耗超过阈值时,系统可以通过短信向用户发送更新。所需组件包括电能表、Arduino Uno、GSM 模块。查看智能电能表详细信息并试用演示 10. 太阳能基本上是我们从太阳获得的阳光,可以使用光伏 (PV) 或聚光太阳能 (CSP) 系统将其转化为电能。这种能量可用于路灯、灌溉系统和交通信号灯等各种应用。许多人都对在日常生活中使用这种能源感兴趣,这就是为什么工程专业的学生热衷于做与之相关的项目。以下是可以帮助他们成功完成 B.Tech 的太阳能项目创意列表。这些项目适用于不同的类别,如 DIY、Arduino、LED、电池和创新项目。对于家庭,有各种 DIY 太阳能项目可供选择,需要特殊工具才能操作。其中一些包括使用太阳能的蓝牙扬声器设计、基于离网的 DIY 太阳能系统,由太阳能 PV 跟踪器充电的立体声冷却器,使用太阳能驱蚊,基于太阳能的 USB 充电器,使用太阳能电池充电器的 DIY 手机充电器,使用太阳能通过互联网启用的太阳能跟踪器,基于可移动太阳能发电装置 DIY,基于太阳能的移动充电站,基于太阳能的灌木,基于家庭太阳能的 DIY 电池充电器,基于 LLI 或 Lipo 太阳能充电站,家庭 DIY 太阳能电池板,公寓太阳能系统,基于太阳能的电源,基于纸板的太阳能灯,夜间太阳能灯泡设计。继续讨论 Arduino 项目,列出了各种想法,包括由太阳能充电电池供电的 Arduino Uno、使用 Arduino 的 MPPT 充电控制器、使用 Arduino 的 MPPT 太阳能充电器 - 基于非光学太阳能供电的 Arduino 的 PV 太阳能跟踪器、使用自动和手动模式的双轴太阳能跟踪器面板、由太阳能供电的堆肥监控、用于光跟踪和伺服控制的太阳能电池板、基于 Arduino 的智能能源监控器、基于太阳能的 UPS 控制器、使用 Arduino 的太阳辐射测量、使用太阳能的水箱调节器、太阳能电池板和光强度的能量检测器、基于 Arduino 的太阳能锅炉、基于 Arduino 的太阳跟踪器炮塔、使用 MPPT 和 Arduino 的太阳能充电控制器、由太阳能供电的基于 Arduino 的太阳能充电控制器、使用 Arduino 的能量计、基于 Arduino 和太阳能的气象站等想法。太阳能逆变器项目包括使用 SG3525 手持太阳能逆变器的太阳能逆变器项目、家用太阳能逆变器、基于准 Z 源的馈电 BLDC 驱动太阳能逆变器、带微控制器的旋转太阳能逆变器等想法。最后,还有太阳能 LED 项目,涵盖的主题包括:太阳能 LED 供电的家庭照明系统、用于教室的太阳能光伏照明系统、基于太阳能 LED 的道路标记、使用太阳能发电和净化水的 LED 街道。太阳能电池项目是工程专业学生应用知识和技能的绝佳方式。其中一个项目是 Lipoly 充电器,它使用太阳能为铅酸电池调节器供电。另一个项目涉及使用太阳能为风扇供电,创建手提包大小的太阳能充电器。使用微控制器和 C 语言编程可以实现通过太阳能为电池充电的简单系统。此外,可以使用 MPPT 充电控制器和降压转换器设计 DIY 太阳能升压转换器。这些项目展示了太阳能等可再生能源的潜力。创新太阳能项目创新太阳能项目专注于太阳能物联网和无线项目。其中一个项目是太阳能管理系统项目,它将可再生能源产生的电力分配到城市和农村地区,解决电力问题。然而,它需要一个大型逆变器来存储可变的太阳能,因此电网与当前电网并联设计。家用太阳能项目可产生交流电来操作电器、小工具、照明系统等。基本组件包括太阳能电池板、电池、逆变器和太阳能系统。利用太阳能净化水源清洁饮用水的供应是一个全球性问题,尤其是在盐度普遍存在的沿海地区。基于太阳能的水净化系统可以利用反渗透原理克服这一问题。该项目使用 8051 微控制器来防止溢流,适用于电力供应有限的农村和偏远地区。可以降低水中的盐含量。哈佛大学的 Noah Jaffer 和他的同事开发了一种轻型太阳能昆虫机器人。这种昆虫机器人无需电源即可飞行,其四只翅膀每秒拍打 170 次。翅膀通过两块板控制,一旦电流通过它们,它们就会结合。机器人由安装在翅膀上的六个小型太阳能电池供电,每个电池重 10 毫克。当暴露在光线下时,翅膀开始拍打,机器人飞行约半秒钟后飞离光线。未来的发展可以整合传感机制,让机器人在阳光下飞行。基于物联网的太阳能监控系统可以通过检测太阳能电池板故障、灰尘堆积和连接问题来优化电力输出。该系统不断监控电池板性能,并通过互联网将数据传输到物联网服务器。GUI 显示参数,并在输出低于指定限值时向用户发出警报,从而实现对太阳能发电厂的远程监控。拟议的太阳能电池板双重管理系统使用物联网来防止盗窃并指示维护需求。该系统使用传感器和 LinkIt ONE 来检测加速度计值的变化并跟踪 GPS 位置。可以生成警报并通过短信或电子邮件发送。维护指示是通过电压、灰尘和传感器读数实现的,使用电池板效率数据更新网络服务器。设计了一种使用太阳能的无线充电器,允许将小型太阳能电池板安装在手机上,无需电线即可独立充电。拟议的使用太阳能的无线电力传输系统具有多种优势,包括无需充电线和节能。这种可再生能源丰富且免费,可以减少客户的电费并为他们省钱。该系统使用太阳能电池板产生电能,电能储存在电池中,然后以电磁波的形式从发射器传输到接收器。森林火灾探测项目涉及两个模块:监测区域模块 (MAM) 和森林区域模块 (FAM)。这些模块包括传感器、与 Zigbee 的串行通信、使用 MPPT 的太阳能收集以及基于 PC 的 Web 服务器。该系统专为区域监测而设计,效率为 85%。网络服务器降低了整个系统的成本和重量。文中提到的其他未来太阳能项目包括:* 由太阳能供电的对接系统* 利用太阳能的信标项目* 使用太阳能为电动汽车供电的项目* 太阳能疫苗冰箱* 太阳能炊具和烤箱* 太阳能手机充电器* 太阳能油漆和织物* 荷兰太阳能自行车的路径* 比利时由太阳能供电的火车隧道* 马尔代夫的浮动太阳能农场* 各国由太阳能供电的机场、旋转木马、国家和太阳能公园。这些项目适合工程专业学生作为最后一年的项目。一个例子是具有自动强度控制的太阳能 LED 路灯。太阳能 LED 路灯因其高效率和易于强度控制而越来越受欢迎。该项目专注于设计太阳能 LED 路灯系统,该系统在高峰时段最大限度地利用能源,同时在夜间最大限度地减少浪费。该系统在白天将太阳能电池板的能量存储在电池中,然后在晚上用于为 LED 供电。为了确保高效充电,LED 阵列由充电控制器单元控制,该单元可感应过度充电或过载等异常情况。电池中存储的直流电用于通过开关装置为 LED 供电,LED 的强度使用脉冲宽度调制 (PWM) 技术控制。这允许从微控制器向开关提供不同的占空比脉冲,从而使 LED 的强度在特定的时间间隔内发生变化。该项目还探索了使用主动跟踪系统来最大限度地利用太阳辐射的太阳跟踪太阳能电池板。使用步进电机阵列和假太阳能电池板来演示这一概念。最后,太阳能充电控制器旨在调节电池充电,防止过度充电、低电压或过载情况。该系统使用比较器来感应这些异常情况并提供输出信号来控制电池的充电。这确保了电池充电和放电的安全高效。该项目利用太阳能用于街道照明和灌溉系统的创新方法在自然资源有限的地区具有巨大的实际应用潜力。土壤湿度监测系统使用太阳能和自动灌溉控制,即使在电源不稳定的地区也能有效利用水资源。该项目利用太阳能泵来克服主电源频繁不可用的问题,并根据传感器输入控制泵电机,传感器输入可感知土壤湿度水平。该系统还包括太阳能测量功能,如温度、光强度、电压和电流监测,显示在 LCD 显示屏上。其他相关项目包括用于提高光伏发电性能的太阳能跟踪系统、用于灌溉的太阳能水泵系统以及用于汽车应用的利用雨水和太阳能自动操作的雨刷。此外,电动自行车可以设计为配备太阳能电池板来为电池充电,太阳能电池板还可以为在日出和日落时打开/关闭的夜灯供电。本文介绍了各种创新项目和系统,旨在利用太阳能为日常问题提供解决方案。这些项目包括: - **工业锅炉控制**:一种使用太阳能电池板控制工业锅炉温度的系统,满足供暖需求。 - **太阳能多用途机器人**:一种由太阳能驱动的机器人,能够在农业环境中挖土、播种和洒水。 - **太阳能冷却系统(阿联酋)**:一种旨在在炎热的夏季减少阿联酋建筑物电费并节约能源的系统。 - **设计太阳能供电和操作门**:一种使用太阳能操作的门,由通过太阳能充电的电池供电,并通过远程操作控制。 - **太阳辐射追踪器**:通过追踪太阳的运动来优化太阳能电池板效率以最大限度提高发电量的系统。 - **基于纳米太阳能电池的光伏系统设计**:一个分析使用纳米技术从阳光发电的光伏系统成本的项目。 - **设计用于去除太阳能电池板上灰尘的嵌入式系统**:一种旨在去除灰尘和提高太阳能电池板性能的嵌入式系统,确保最大限度的输出能量。 - **通过可持续的植物修复方法防止水土流失**:一种利用太阳能监测土壤湿度和 pH 值的方法,防止水土流失。 - **基于太阳能的海水淡化生产**:一个利用太阳能淡化海水以生产淡水的项目。 - **利用太阳能进行村庄电气化**:通过使用太阳能为村庄提供电力供应,节约用电。 - **太阳能袋和抛物面太阳能烤箱**:专注于为利用太阳能发电和烹饪提供可持续解决方案的项目。该烤箱可以在 15-20 分钟内烧开水,在 50 分钟内煮好三人份的米饭,还能节省电能。其他项目包括太阳能驱动的割草机、使用 GSM 为煤矿工人提供的灵活呼叫系统、基于太阳能的农村农业电围栏以及为机器人提供动力的带光束电路的太阳能发动机。此外,还有太阳能驱动的便携式收音机和各种其他创新理念,如太阳能移动充电器、冰箱和空调。这些项目展示了太阳能在节省电力和更高效地完成任务方面的潜力。太阳能因其可用性、可持续性以及零污染物排放而被认为具有优势。
光学通信集成电路的设计涉及各种技术,以提高性能,鲁棒性和功率效率。本文讨论了使用不同拓扑结构的无电感器,可变带宽和功率可观的光接收器前端的发展。它突出了校准时钟和数据恢复系统以最大程度地减少能息影响的重要性。该设计还提出了在65 nm CMOS工艺中制造的高增益宽带逆变器的cascode变速器放大器。多个带宽增强技术用于改善放大器的性能。此外,本文提出了一种低功率医疗设备和高通用性电子设备,该设备几乎没有功耗。20-Gb/s时钟和数据恢复电路的设计结合了用于低功率耗散的高速操作的注射锁定技术。频率监控机制可确保VCO固有频率和数据速率之间的密切匹配。此外,该文章介绍了在0.13 UM CMOS过程中制造的10 GB/S爆发模式变速器放大器(BMTIA),该过程已用于被动光网(PONS)中的爆发模式接收器。SIGE BICMOS中155-MB/S-4.25-GB/S激光驱动器的设计可在具有分段的驱动器切片方案的广泛调制电流上保持动态性能。CDR IC具有添加的Demux功能,并在尖端生产技术中实现。通过引用有关该主题的著名论文和书籍,讨论了硅光子学的最新进展。B.最后,本文讨论了CMOS光学收发器的设计,该收发器符合IEEE802.3AH PX20标准的规格,并在/SPL PlusMn/0.4 DBM和/splplusmn/0.6 db中成功抑制了宽度从-40到100/spl spl deg/c/c。第一本关于可编程光子学的全面书籍提供了对基本原理,架构和潜在应用的深入概述。几项重要的研究表明,用于深度学习,量子信息处理和其他用途的大规模可编程光子电路。最近的一项研究提出了基于氮化硅波导的8×8可编程量子光子处理器,表现出低光损失,对单个光子上的线性量子操作有吸引力(Taballione等,2018)。这项成就引发了人们兴趣探索可编程光子电路处理微波信号的功能。研究人员在开发通用离散的傅立叶光子光子集成电路架构(Hall&Hasan,2016),玻璃芯片上可重构的光子学(Dyakonov等,2018)和光学处理器实现的神经网络(Shokraneh等人,2019年)方面取得了重大进展。这些进步为创新应用打开了大门,例如具有DSP级灵活性和MHz波段选择性的光子RF过滤器(Xie等,2017)。大规模硅量子光子学的发展也使实施了任意的两Q量处理(Qiang et al。,2018)和具有集成光学的多维量子纠缠(Wang等,2018)。pai,S。等。IEEE J. SEL。IEEE J. SEL。此外,还使用可重构光子电路来生成,操纵和测量纠缠和混合物(Shadbolt等,2012)。此外,研究的重点是使用纯正的可编程网格(Annoni等,2017)进行解散光,并实施了综合透明检测器,这些透明检测器可以测量光强度而不诱导额外的光损失。这些可编程光子电路中的这些进步为量子计算,电信及以后的创新应用铺平了道路。任意前馈光子网络的并行编程。顶部。量子电子。25,6100813(2020)。 Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。25,6100813(2020)。Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Reck,M.,Zeilinger,A.,Bernstein,H。J.&Bertani,P。任何离散统一操作员的实验实现。物理。修订版Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Lett。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。&Bogaerts,W。耐受性,宽带可调2×2耦合器电路。选择。Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E.使用双驱动方向耦合器的集成光子可调基本单元。选择。Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A.&Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。J.光。技术。38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。38,723–735(2020)。插图广告Google Scholar Miller,D。A.J. Opt。Soc。B.使用自配置网络分析和生成多模光场。Optica 7,794–801(2020)。插图广告Google Scholar Morizur,J.-F。等。可编程的统一空间模式操作。am。A 27,2524(2010)。插图广告Google Scholar Labroille,G。等。基于多平面光转换的高效和模式选择性空间模式多路复用器。选择。Express 22,15599–15607(2014)。饰物ADS PubMed Google Scholar Tanomura,R.,Tang,R.,Ghosh,S.,Tanemura,T。&Nakano,T。使用多层方向耦合器使用多层方向性耦合器。J.光。技术。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A. B. 设置干涉仪的网格 - 反向局部光干扰方法。 选择。 Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。 校准和量子光子芯片的高保真度测量。 新J. Phys。 15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A.B.设置干涉仪的网格 - 反向局部光干扰方法。选择。Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。校准和量子光子芯片的高保真度测量。新J. Phys。15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。15,063017(2013)。插图广告Google Scholar Cong,G。等。通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。选择。Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。多功能硅光子信号处理器核心。nat。社区。8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。8,1–9(2017)。此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。单层整合的多层硅二硅硅波导平台的最新进展已使三维光子电路和设备的开发(Sacher等,2018)。AIM Photonics MPW已成为一种高度可访问的技术,用于快速的光子综合电路(Wahrenkopf等,2019)。此外,具有紧凑的平面耦合器,跨言式缓解和低跨界损失的多平面无定形硅光子的发展进一步扩大了光子整合电路的能力(Chiles等,2017)。在热控制方面,已经提出了对硅光子电路的热控制的各种加热器架构,包括用于CMOS兼容的硅热硅热电器(Van Campenhout等,2010)的NISI波导加热器(Van Campenhout等,2010),并取消热跨与光的跨核电效应,对光电综合通道效应(MilanizaDeh et al。)。电流效应也在硅中进行了研究,并在光学调节剂中进行了重要应用(Reed等,2010)。此外,用于集成光子学的硅氧核平台的开发使创建具有降低光学损失的光子设备(Memon等,2020)。压电调谐的氮气环谐振器也已被证明,并具有潜在的光子整合电路中的应用(Jin等,2018)。此外,使用压电铅锆钛酸钛酸盐(PZT)薄膜开发了应力调节剂,从而可以创建可调光子设备(Hosseini等,2015)。Wuttig等。派兰多·赫兰兹(Errando-Herranz)等。Quack等。使用液晶壁板还可以广泛调整硅在隔离器环谐振器中,并具有潜在的光子整合电路中的应用(De Cort等,2011)。此外,使用具有液晶浸润的SOI插槽波导开发了数字控制的相变,从而可以创建可调光子设备(Xing等,2015)。最后,在硅硅酸盐和纳米结构的钛酸钡中已证明了大型的效应,并在光子综合电路中具有潜在的应用(Abel等,2019)。开发了用于非易失性光子应用的相变材料。研究了启用MEMS的硅光子集成设备和电路。研究了启用了MEMS硅光子集成设备和电路的性能。通过通用可编程光子电路降低原型光子应用的成本是一个不断增长的领域。几项研究探索了这些电路在各个领域的潜力,包括硅光子系统和IIII-V-ON-ON-ON-ON-ON-ON-ON-ONICON整合。研究人员一直在开发技术,例如用于控制大型硅光子电路的热光相变,以及用于硅光子平台中高速光学互连的活性组件。这些进步可能有可能使创建更有效,更可扩展的光子系统。此外,研究还研究了III-V材料在硅底物上的整合,这可能会导致改善的性能和降低光子学应用的成本。研究人员还一直在探索通过创新来提高光学互连效率的方法,例如基于转移打印的III-V-n-Silicon分布式反馈激光器的集成。最近的工作集中在开发可编程的光子电路上,这些电路可以针对不同的应用进行重新配置,从而有可能减少原型制作所需的成本和时间。这些电路可用于各种光子系统,从高速光学互连到量子技术。还研究了这些发展的经济可行性,研究人员探索了通过使用通用可编程光子电路来降低成本的方法。此外,一些研究已经深入研究了新的应用,例如全光信号处理和光学证明,突出了各个领域的光子学的巨大潜力。改写文本:对光子相关的研究论文的调查和来自信誉良好的来源的文章揭示了对微波信号处理的可编程光子组件的重视。值得注意的是,最近的研究集中在使用集成波导网格的可重构光学延迟线和真实时延迟线的发展。此外,人们对无线电纤维技术,激光雷达系统体系结构和量子计算应用的兴趣越来越大。光子学与其他技术的整合已导致在诸如光谱传感,激光多普勒振动法和光束束成形和转向等领域的显着进步。尽管最初令人兴奋,但身体和经济因素阻碍了进步。此外,对光子生物传感器,硅光子电路和六束同伴激光多普勒振动的研究表明,在各种应用中的准确性和效率提高了潜力。最近的研究还强调了可编程超导处理器和量子机学习算法的重要性。已经探索了使用集成波导网格的可重构光学延迟线和真实时延迟线的开发,重点是提高信号处理能力。用于光谱传感的硅光子电路和六光同源性激光多普勒振动法在各种应用中显示出令人鼓舞的结果。量子计算研究继续前进,最近的研究表明使用可编程超导处理器进行量子至上。光子学与其他技术的集成为改进信号处理,传感和计算功能开辟了新的可能性。Ivan P. Kaminow的2008年Lightwave Technology Journal of Lightwave Technology文章重点介绍了自1969年以来光学综合电路的希望。最近的商业发展可能标志着光子摩尔定律曲线的开始。关键里程碑包括从可见的LED到III-V光子综合电路(图片)的过渡。审查了显着的进步,例如大规模INP发射器和接收器图片,速度高达500 GB/s和1 TB/s。此外,自从CMOS晶圆晶片级集成以来,硅光子电路包装已显着改善。专家通过通用的基础方法预测了微型和纳米光子学的革命,与三十年前的微电子中类似创新的影响相呼应。硅光子学有望为从电信到生物医学领域的各种应用提供低成本的光电溶液。