具有安捷伦1260 Infinity III蒸发光散射探测器的敏捷1260 Inifinity III LC系统用于评估原油中的悬烷 - 不溶性沥青质。使用Agilent InfinityLab快速更改内联滤波器,启用了Maltenes和Asphaltenes的分离。使用内联滤波器在正常相HPLC条件下将测试溶液注入项项项(见图1)。一旦样品进入自动进样器和内联滤波器之间的七烷流,就会诱导沥青质的沉淀。沉淀的沥青质由内联滤光片(4.6 mm ID,0.5 µm孔隙率)保留,而Maltenes经过检测器。当流动相从六烷闪烁到具有高溶剂功率(例如甲苯)的溶剂时,混合物还原了沥青质。使用蒸发光散射检测来量化沥青质的浓度。此方法具有快速,可重复的和可重现的,具有出色的灵敏度和检测极限。
纵观激光粒度测量的发展历史,曾使用过许多光源作为粒子入射光的光源。其中最流行的是激光器。20 世纪 70 年代初,Microtrac 使用氦氖气体激光器作为准直相干光源,该光源提供近乎单一波长,是光散射粒度测量所必需的。电子技术的进步导致了半导体激光器(俗称激光二极管)的发展。因此,在 20 世纪 80 年代中期,Microtrac 开始使用这些类型的激光器,以便为客户提供长寿命稳定性和应用,从而降低服务要求和维护成本。毫无疑问,Microtrac 已证明这些设备具有极高的可靠性和稳定性。1990 年,随着超细粒度分析仪 (UPA) 的出现,它们被广泛使用,并扩展到采用动态光散射测量纳米颗粒的现代 Nanotrac 型号。本文解答了粒度人员考虑激光器类型时经常出现的问题。它还试图解决合理的光学设计原理和技术知识如何解决仪器设计过程中的问题。
PCO.PANDA 26 SCMOS传感器的出色全球快门功能使其成为有效双成像的理想候选者 - 在流量分析中执行所有类型的P文章I Mage V Elocimetry测量的先决条件。在PIV中,将光散射颗粒添加到正在测试的流量中。 激光束被形成光板,在时间间隔ΔT时用短脉冲两次照亮散射颗粒。 此时间间隔的下限由相机的双快门相互构图定义。 将散射的光记录到高分辨率数码相机的两个连续帧上。 较短的双快门相互交流时间,可以分析的流速越高。在PIV中,将光散射颗粒添加到正在测试的流量中。激光束被形成光板,在时间间隔ΔT时用短脉冲两次照亮散射颗粒。此时间间隔的下限由相机的双快门相互构图定义。将散射的光记录到高分辨率数码相机的两个连续帧上。较短的双快门相互交流时间,可以分析的流速越高。
摘要:研制了一种新型混合纳米胶束,即载阿霉素 (Dox) 的 Pluronic P123/聚乙二醇 2000-二硬脂酰磷脂酰乙醇胺纳米胶束混合胶束 (P123-PEG2000-DSPE (Dox)),以研究纳米制剂对乳腺癌 (BC) 多药耐药 (MDR) 的逆转作用。本研究旨在探索纳米制剂对 BC 多药耐药性的逆转作用。制备了 P123-PEG2000-DSPE (Dox) 混合胶束,然后通过动态光散射法、药物释放曲线和抗肿瘤活性(包括动态光散射法、MTT、免疫荧光、Western blot 和 Annexin V-PI)对 BC MCR-7 细胞和 BC 耐药细胞系 MCF-7R 进行表征。 P123-PEG2000-DSPE(Dox)通过抑制MDR1和p-gp的表达、减少药物外排、增加细胞内吞作用,逆转细胞耐药性,且效果优于PEG2000DSPE(Dox)。此外,对于载药组,P123-PEG2000-DSPE(Dox)的细胞毒性优于PEG2000-DSPE(Dox)和Dox。空药物载体PEG2000-DSPE和P123-PEG2000-DSPE没有细胞毒性。这些结果表明P123-PEG2000-DSPE(Dox)胶束可以有效逆转BC细胞的耐药性,是一种很有前途的抗肿瘤药物递送系统。
缩写:AFM,原子力显微镜;冷冻em,冷冻电子显微镜; DLS,动态光散射; EV,细胞外囊泡; FTIR,傅立叶转化红外光谱; mRNA,Messenger RNA; mirna,microRNA; NGS,下一代测序; NTA,纳米颗粒跟踪分析; SDS-页,十二烷基 - 硫酸盐聚丙烯酰胺凝胶电泳; TRP,可调电阻脉冲传感。
材料特性 材料制造和加工 电子显微镜 (SEM、TEM、STEM) 胶体纳米晶体合成 光谱 (UV-Vis-NIR、FTIR、Raman、XAS) 热注射和慢速注射合成 元素分析 (ICP-AES、EDX、XPS) 配体交换和表面改性 动态光散射 刮刀涂布和旋涂 粉末 X 射线衍射 射频溅射 AC/DC 电子测量 电子顺磁共振光谱 光谱椭圆偏振法 光谱电化学
I.引言光学通信的散射是无关的,无论纤维中存在的光功率量如何。它可以分为两个方案:自发和刺激的散射[1,2]。自发的光散射是指在条件下散射的过程,因此,光学材料的特性不受入射电场的存在影响。对于能力强度的输入光界,自发的光散射可能会变得非常强烈;因此,在这种刺激的方向上,散射过程的性质严重修饰了材料系统的光学特性,反之亦然。此外,雷利(Rayleigh),拉曼(Raman)和布里鲁因(Brillouin)散射事件可能引起自发和刺激的散射。瑞利散射来自非传播密度的闪光,可以称为熵闪烁中的散射。拉曼散射来自光与散射介质中组成分子的振动模式的相互作用。等效于此,这可以被视为光子声子中光的散射。brillouin散射来自光与传播密度波或声音子的相互作用。这些散射过程中的每个散射过程始终存在于光学纤维中,因为没有纤维没有微观缺陷或驱动这三个过程的热闪光。被认为是主要的光纤维非线性。因此,本评论文章将强调这一主题。
摘要:我们对使用激光技术对光学捕获的单个空气气溶胶粒子(特别是化学气溶胶粒子)的研究进行了广泛的评估。迄今为止,已经对气溶胶集合及其类似的块状样品进行了广泛的研究,并且已经对空气中的颗粒进行了很好的一般描述并被接受。然而,已经报告了观察到的气溶胶行为与预期的气溶胶行为之间存在很大差异。为了填补这一空白,单粒子研究已被证明是一个独特的交叉点,可以清楚地表示各种环境条件下影响整体气溶胶行为的微观特性和尺寸相关行为。为了实现这一目标,光学捕获技术允许保持和操纵单个气溶胶颗粒,同时提供显着的优势,例如非接触式处理、无需样品收集和制备、防止污染、适用于任何类型的气溶胶以及灵活适应各种分析系统。我们回顾了基于光粒子相互作用的光谱方法,包括弹性光散射、光吸收(腔衰荡和光声光谱)、非弹性光散射和发射(拉曼、激光诱导击穿和激光诱导荧光光谱)和数字全息术。激光技术提供了多种优势,例如高速度、高选择性、高精度以及实时、原位执行的能力。本评论特别讨论了每种方法,强调了优点和局限性、早期突破以及有助于更好地理解单个粒子和粒子集合的最新进展。