组织学分析是癌症诊断的黄金标准方法。但是,它容易出现主观性和采样偏差。应对这些局限性,我们引入了一种定量的双峰方法,旨在为可疑区域提供非侵入性指导。将光谱光谱和定量超声技术组合在一起,以表征来自动物模型的两种不同的骨肿瘤类型:软骨肉瘤和骨肉瘤。使用两种不同的细胞系诱导骨肉瘤的生长。进行组织学分析作为参考。光反射率的三个超声参数和强度显示,在5%水平上,软骨肉瘤和骨肉瘤之间存在显着差异。同样,尽管在组织学检查中观察到了两种类型的骨肉瘤,但两种类型的骨肉瘤的变化也被报道了两种类型的骨肉瘤。这些观察结果表明我们技术在探测细组织特性中的敏感性。其次,超声基于光谱的技术鉴定了软骨肉瘤细胞和核的平均大小,相对误差分别为22%和9%。光学当量技术正确提取了软骨肉瘤和骨肉瘤的细胞和细胞的散射尺寸分布(分别为9.5±2.6和µ)。软骨肉瘤的核的光散射贡献估计为52%,骨肉瘤的光散射贡献可能分别表明大量和不存在细胞外基质。因此,超声和光学方法带来了互补参数。他们在细胞和核尺度上成功估计了形态学参数,这使我们的双峰技术有望用于肿瘤表征。
各种粒子类型可以分为大颗粒(大于1微米),可通过红外光散射检测到最佳检测,而小颗粒(小于1微米),包括烟雾,这些颗粒可通过蓝光散射有效检测到。在获得专利的双波长检测室中,使用精确算法将红色和蓝光散射信号精确组合在一起,以检测火和锂离子电池电池离气颗粒的副产品。这些相同的算法拒绝欺骗性现象的影响 - 在其他烟雾检测技术中未发现的不良警报条件提供抵抗力。
m ethods。培养并分析从尸体供体结膜组织中分离的基质细胞,以确定它们是否可以定义为MSC。通过流式细胞仪分析MSC标记的表达。细胞在脂肪生成,成骨和软骨细胞分化培养基中培养,并分别用油红色,冯·科萨(Von Kossa)和甲状腺蓝色染色,以确定多能容量。ev。eV形态,通过动态光散射分析的尺寸分布,EV通过纳米流细胞仪单独表征。使用结膜上皮细胞系IM-HCONEPIC在体外模型中分析了电动汽车对氧化应激和活力的影响。
摘要。功能性墨西哥奶油蛋白酶光相变的开发对推进光学和光子学应用的有很大的希望。我们对SB 2 SE溶液处理的综合研究3薄膜呈现了一种从溶剂勘探到底物涂层的系统方法。通过采用表征技术,例如扫描电子显微镜,动态光散射,能量分散的X射线光谱,拉曼光谱和X射线衍射,我们揭示了对结构,组合和形态学特性的关键见解,以确保这些技术以及这些技术的选择,以确保这些技术的选择,以确保有必要的特征。与当前报道的沉积技术相比,我们的发现突出了解决方案沉积作为可扩展SB 2 SE 3膜处理的途径的潜力。
凝固点检测系统提供自动化样品测试,其精度和重复性符合 ASTM D1177、D1655、D2386、D5901 和相关国际规范。样品在测试室中冷却并不断搅拌。精密的动态测量系统每 0.5°C 从位于测试样品上方的同轴光纤电缆发出一次光脉冲。然后,光脉冲从光纤的镜子反射到光学传感器。先进的软件包分析光脉冲的响应。通过光散射监测结晶的初始出现。然后加热样品,并将碳氢化合物晶体消失的温度记录为凝固点。无论样品颜色如何,所有清澈透明的燃料都可以通过检测系统轻松测量。
摘要:在自然界中,在各种生物体中广泛观察到结构颜色,这是由于通过进化而开发的复杂的纳米结构设计所致。甲虫具有超过350,000种的甲虫,表现出显着的颜色多样性,其中许多是结构性的,而不是基于色素的。这些结构颜色来自光学过程,例如膜干扰,衍射光栅,光散射和光子晶体。此外,一些甲虫的鞘翅可通过伪装,通信和环境适应来改变颜色,从而帮助生存。本评论探讨了结构颜色的基本光学机制,然后调查三种颜色改变甲壳虫的鞘翅方式。基础研究的摘要可以帮助科学家进一步研究有关结构色的仿生材料。
NP的形成及其化学成分。NP悬浮液,以在Malvern Zetasizer仪器(Malvern Panalytical Ltd,英国)中使用动态光散射(DLS)方法来确定颗粒的平均大小,分布和Zeta势,并在室温和90°的散射角度确定。使用扫描电子显微镜(Tescan Orsay Holding,Brno-Kohoutovice,Czech Republic)在15kV加速电压加速电压后评估了干燥NP的形态特征。通过读取RSV的吸光度来计算RSV捕集效率(EE)。CS NP悬架(总RSV)和无NP上清液(免费RSV)在Unico 2800 UV/可见分光光度计机器(UNICO,UNICO,DAYTON,NJ,NJ,NJ)中为310 nm。EE是根据以下等式计算的:
目前,尚无公认的可追溯的 50 纳米以下纳米颗粒校准标准,而且由于纳米颗粒的特性在很大程度上取决于尺寸,因此需要新的计量能力来确保质量和创新的一致性。NPL 纳米材料团队最近开发了计量专业知识,使用透射电子显微镜、原子力显微镜和纳米颗粒动态光散射测量等技术测量尺寸范围在 0.5 纳米至 1 微米之间的纳米颗粒(干燥或悬浮在液体中)。该团队还在协调一个涉及 8 个国家计量机构的欧洲项目,以提供新的可追溯标准和程序来确定纳米颗粒的尺寸、形状和分布,精度优于 1 纳米。这将相互关联
主题2:使用深层神经网络人口趋势的人类跌倒检测使一对一的个人护理越来越不可持续。护理资助者正在寻找针对护理危机的成本有效解决方案。目前有床传感器,椅子占用和缺勤者,紧急和移动警报,手镯,但是这些依赖于客户激活它们或记住佩戴/激活它们。突然跌倒,无意识或不动的可能是不可能的。该项目旨在调查如何使用深层的神经网络技术来检测视频中的人类跌倒,进行危险的人类活动识别,并迅速确定由于崩溃/跌倒而迅速识别出危险的脆弱客户。该项目在于人类活动识别领域,但重点是在国内环境下进行秋季检测。主题3:将深度学习应用于单个粒子光散射模式的分类
瞬态事件的光学成像在其实际发生时间内具有令人信服的科学意义和实际优点。1出现在二维(2D)空间中,并在飞秒(1fs¼10-15s)上发生到微秒(1μS¼1TO-6 s)的时间尺度,这些瞬态事件反映了生物学中许多重要的基本机制。2 - 4但是,许多瞬时现象是不可重复或难以再现的。示例包括自发的突触活动,在不同温度下的5纳米颗粒的发光寿命,6和活组织中的光散射。7在这种情况下,需要大量可重复实验的常规泵 - 探针方法是不可应用的。同时,泵 - 探针接近使用复杂设备的光子到达的时间,以在空间或时间上执行耗时的扫描。在这些情况下,即使瞬态现象可再现,这些