花青素(ACNS)是在许多红紫色水果,蔬菜和谷物中发现的一类类黄酮色素,由于其多种生物学特性,引起了人们的重大关注。由于它们的抗氧化剂和抗炎症活性,已经发现富含这些化合物的饮食的食用可对包括心血管和神经退行性疾病在内的众多病理学产生健康效果。但是,ACN的生物利用度低,在口服给药后限制了它们在人体中的分布,因此,其治疗用途是一个重大问题。为了应对这一挑战,已经提出了多种系统内的封装。在循环经济方法的更广泛看法下,本研究探讨了使用两种生物乳球分子(Zein and Starch)从紫色玉米蛋白棒中提取的ACN的封装,以形成微型和纳米结构。通过超级性能液相色谱分别与飞行器质谱仪,动态光散射和扫描电子显微镜分别耦合到超级性能液相色谱,以封装效率,大小和形态来表征所得的输送系统。基于Zein的纳米颗粒和淀粉的微观结构均显示出令人鼓舞的胶体稳定性和封装效率。然而,只有基于Zein的纳米颗粒在人肠细胞中没有细胞毒性表现出,并且可以代表研究ACNS生物利用度潜在增强的起点。
微化晶体中的结晶石和簇大小对于增强粉末宿主中激光作用至关重要,以获得固态随机激光器。结晶石从50至200 nm的范围内,小于1 µm的晶体簇在此应用中不受欢迎,因为这些特征会增加激光阈值[1-2]。形态在粉末发光上也起着重要作用。很少有作品将这种影响对激光作用[3]。最近,属于该家族的双钨的欧盟3+激活的纳米和微溶液晶体的发光研究是(WO 4)2,其中A是碱金属,并且在文献中广泛报道了稀土离子[4]。这些研究表明,这些欧盟掺杂的宿主非常有希望,对于由于强发光而与y 2 o 2 s相比,由于强劲的发光以及化学稳定性,用于W的红色发射材料,这是该设备中使用的通常的化合物。此外,对于固态随机激光器的双钨微化颗粒仍然没有研究。在这项工作中,有人建议通过改良的pechini sol -gel方法获取未掺杂和nd 3+掺杂的lila(WO 4)2的样品。分析了钙化时间和温度对形态,结晶石和簇大小的影响。样品以DTA,SEM,XRD和光散射为特征。
报告介绍了一项研究,其中使用预定的制造方法将轻木、白蜡木和桦木制成透明木材。透明木材有许多可能的应用,包括节能建筑、包装、太阳能电池和电子设备。这项研究的目的是比较获得的透明样品的形态和光学特性,并将这些结果与它们的微观结构联系起来。这样做是为了确定哪种木材最适合预定的制造方法。所选的制造方法包括三个步骤:脱木素、溶剂交换和聚合物渗透。该工艺的第一步,即脱木素,目的是去除木质素,木质素是木材中赋予木材颜色的成分。这是通过在酸性环境中用醋酸盐缓冲液和亚氯酸钠进行化学处理,同时诱导加热来实现的,木材样品由此变白。然后将样品放入真空干燥器中,脱木素化学品首先与乙醇交换,然后与丙酮交换。乙醇可防止纤维收缩,丙酮可去除木材结构中的最后化学残留物。在最后一步聚合物渗透之前,甲基丙烯酸甲酯单体聚合成低聚物。然后在真空条件下将它们渗透到木材样品中,在那里它们聚合成聚甲基丙烯酸甲酯 (PMMA)。PMMA 具有与木材相似的折射率,这减少了光散射并增加了样品的透明度。然后将木材样品包装在两块玻璃板之间,用铝箔包裹,并在烤箱中加热以完成聚合。此后,获得透明的木材片。对木材样品的光学特性和形态进行了表征。为了确定光学特性,测量了透射率和雾度。透射率表示有多少光可以穿过样品,而雾度表示与透射率相关的光散射量。这些参数是根据 ASTM D1003“透明塑料雾度和透光率的标准方法”测量的。使用扫描电子显微镜 (SEM) 表征样品的形态,并获取高分辨率图像。通过这些图像,可以分析木材样品的微观结构,并评估脱木素和聚合物渗透的程度。光学特性测量结果表明,轻木的透光率最高(81-87%),其次是桦木(74-83%),然后是白蜡木(早材 66-78%,晚材 74-83%)。此外,轻木的雾度约为 65-70%,桦木约为 70-75%,白蜡木约为 74-80%。分析 SEM 图像后,得出结论:轻木的脱木素程度最高。这是通过观察纤维之间的细胞壁角来确定的,未经处理的木材中细胞壁角充满了木质素。观察到这些空间在脱木素的轻木中大多是空的,这表明这种木材的脱木素程度最高。由于所有样品中都有气穴,因此三种木材的聚合物渗透程度被认为是相同的。总的来说,这导致轻木是三种木材中最透明的,因此可以认为它最适合这种制造方法。
哲学和道德,关于科学和研究的道德,智力诚实和研究完整性,科学不当行为:伪造,制造和窃(FFP)(FFP),多余的出版物:重复和重叠的出版物,萨拉米语,选择性的报告,选择性报告和陈述数据。出版道德:定义,引言和重要性,利益冲突,出版物不当行为:定义,概念,导致不道德行为的问题,违反出版伦理学,作者身份,出版物不当行为,投诉和上诉,掠夺性出版商和期刊。II II:生物信息学和生物统计学下一个基因组测序和分析方法。 染色体构象捕获和染色质免疫沉淀与测序(CHIP-SEQ)耦合。 序列对齐clustalw和Omega。 统计,数据类型,平均值,模式,中值,样本方差和样本标准偏差的简介。 数据解释和分析,精度和准确性,误差分析,最小二乘拟合,线性和非线性回归和相关分析,假设检验(T和F假设检验),显着性测试,拟合测试的方形优势。 拟合优度的重要性。 单元III:Techniques-1电泳:类型,原理和应用。 印迹技术:类型,原理和应用。 通过ELISA测定抗原抗体浓度。 确定解离常数和基本的生化计算。 质谱法:原理,电离方法和质谱的应用。II II:生物信息学和生物统计学下一个基因组测序和分析方法。染色体构象捕获和染色质免疫沉淀与测序(CHIP-SEQ)耦合。序列对齐clustalw和Omega。统计,数据类型,平均值,模式,中值,样本方差和样本标准偏差的简介。数据解释和分析,精度和准确性,误差分析,最小二乘拟合,线性和非线性回归和相关分析,假设检验(T和F假设检验),显着性测试,拟合测试的方形优势。拟合优度的重要性。单元III:Techniques-1电泳:类型,原理和应用。印迹技术:类型,原理和应用。通过ELISA测定抗原抗体浓度。确定解离常数和基本的生化计算。质谱法:原理,电离方法和质谱的应用。明亮场和共聚焦显微镜的原理和应用。单元IV:Techniques-2色谱原理及其类型。 紫外可见吸收光谱的原理和应用。 原理和荧光光谱的应用。 圆形二科运动(Far-UV,近紫外)。 红外光谱。 拉曼光谱和动态光散射。 X射线衍射的基本,Bragg定律,X射线晶体学,低温电子显微镜,透射电子显微镜,扫描电子显微镜,NMR光谱的基础知识及其应用。单元IV:Techniques-2色谱原理及其类型。紫外可见吸收光谱的原理和应用。原理和荧光光谱的应用。圆形二科运动(Far-UV,近紫外)。红外光谱。拉曼光谱和动态光散射。X射线衍射的基本,Bragg定律,X射线晶体学,低温电子显微镜,透射电子显微镜,扫描电子显微镜,NMR光谱的基础知识及其应用。
摘要:球形金纳米粒子 (GNP) 因其在生物医学应用方面的独特性质而受到广泛研究,作为药物靶向递送系统 (DTDS) 中的纳米载体而备受关注。表面功能化的可能性,特别是在延长血液中的半衰期和增强细胞摄取方面,为克服流行抗癌药物 (如顺铂) 的局限性提供了机会,这些药物由于非选择性运输而导致严重的副作用。在此,我们介绍了金纳米粒子-顺铂体系形成的研究 (关于反应动力学和平衡),其中证明形成效率和稳定性在很大程度上取决于纳米粒子表面功能化。在本研究中,首次使用毛细管电泳结合电感耦合等离子体串联质谱 (CE-ICP-MS/MS) 来监测金-药物纳米缀合物的形成。研究包括优化 CE 分离条件和使用 CE-ICP-MS/MS 开发的方法确定反应动力学。为了表征纳米载体并描绘其表面过程引起的物理化学性质的变化,通过动态光散射 (DLS) 测量进行了额外的流体动力学尺寸和 ζ 电位。对三种功能化 GNP(GNP-PEG-COOH、GNP-PEG-OCH 3 和 GNP-PEG-生物素)的检查区分了药物结合效率和纳米结合物稳定性的本质差异。
摘要:羟基磷灰石纳米粒子 (HApNPs) 是一种尺寸小于 100 纳米的无机材料。它们的主要特性是生物相容性,因为它们的化学成分与人体骨骼相似,因此适合在生理环境中使用。这些特性使它们成为一种有前途的甾醇衍生药物输送替代品,与传统的药物输送方法相比,具有更好的靶向性和控制释放性。在本研究中,使用化学沉淀法合成了负载胆固醇和 β-谷甾醇的 HApNPs。通过傅里叶变换红外 (FTIR) 光谱对纳米粒子 (NPs) 进行表征,以识别功能组并确认 HApNPs 上存在甾醇。使用透射电子显微镜 (TEM) 和动态光散射 (DLS) 分析了 NPs 的形态和尺寸。通过热重分析确定甾醇衍生物的负载量,并评估了纳米粒子在酸性介质中的稳定性。结果表明,成功合成了负载胆固醇和β-谷甾醇的HApNP,其呈球形,直径小于100纳米。数据证实胆固醇和β-谷甾醇已掺入HApNP表面,并且随后释放。此外,纳米生物界面中甾醇衍生物的存在增强了纳米粒子对酸性条件的抵抗力,表明它们有可能作为药物纳米载体在肠道中靶向释放,而不会在通过胃的过程中发生改变。关键词:羟基磷灰石纳米粒子、胆固醇、β-谷甾醇、界面、酸性介质。
测量最佳实践指南 No.119 确定球形纳米颗粒样品尺寸和尺寸分布的最佳实践指南 Robert D. Boyd 博士和 Alexandre Cuenat 博士 英国泰丁顿国家物理实验室 (NPL) Felix Meli 博士 瑞士联邦计量局 (METAS) Tobias Klein 和 Carl Georg Frase 博士 德国不伦瑞克联邦物理技术研究院 (PTB) Gudrun Gleber 和 Michael Krumrey 博士 德国柏林联邦物理技术研究院 (PTB) Alexandru Duta 博士和 Steluta Duta 博士 罗马尼亚布加勒斯特国家计量研究院 (INM) Richard Hogstrom 博士 芬兰埃斯波计量和认证中心 (MIKES) Emilio Prieto 博士 西班牙马德里西班牙计量中心 (CEM) 摘要 本指南的目的旨在向读者介绍纳米颗粒尺寸测量中的一些关键计量方面。强调了可追溯性和不确定性分析在获得有意义的测量结果方面的关键作用。回顾了纳米材料分析中常用的几种常见技术,并为每种技术给出了不确定性计算的示例。这些技术是电子和扫描探针显微镜的高分辨率技术,可以分辨单个粒子,以及动态光散射和小角度X射线散射的集合方法,可以同时分析数千个粒子。还提供了现有相关标准的列表。
银纳米颗粒(AGNP)的绿色合成,由于它们使用了各种生物学应用,因此具有优势。这项研究的目的是使用桦木(Betula spp。)分支提取物,具有环保,成本效益,简单和廉价的绿色方法。即使是Betula也是宽阔的树,具有丰富的酚类化合物,有关Betula分支的使用的数据受到限制。在此范围内,这项研究是首次使用Betula Branche提取物,这些提取物作为还原和封盖剂来合成银纳米颗粒以评估抗菌活性和抗增殖效率。生物合成的AGNP的特征是各种表征方法,例如UV-可见光谱,动态光散射(DLS),傅立叶变换红外(FTIR)光谱和扫描电子显微镜(SEM)。表征分析揭示了槟榔提取物的酚类化合物是形成AGNP的还原和封盖剂。根据DLS和SEM分析,综合选定的AGNP分别显示为103.2±5.2和69.2±12.7 nm的球形形状。另外,分别通过对选定的微生物和细胞系的抗菌和抗增殖测试评估了生物合成的AGNP的生物学活性。在HT29结直肠癌细胞上,B3-4 AGNP的IC 50值确定为64.27 µg/ml。以及AGNP的抗菌活性结果揭示了对所有研究的测试微生物的剂量依赖性抑制作用。总而言之,这项研究显然表明使用了从betula分支提取物提取物生物合成的银纳米颗粒作为抗菌和抗癌研究的潜在药物。
测量最佳实践指南 No.119 确定球形纳米颗粒样品尺寸和尺寸分布的最佳实践指南 Robert D. Boyd 博士和 Alexandre Cuenat 博士 英国泰丁顿国家物理实验室 (NPL) Felix Meli 博士 瑞士联邦计量局 (METAS) Tobias Klein 和 Carl Georg Frase 博士 德国不伦瑞克联邦物理技术研究院 (PTB) Gudrun Gleber 和 Michael Krumrey 博士 德国柏林联邦物理技术研究院 (PTB) Alexandru Duta 博士和 Steluta Duta 博士 罗马尼亚布加勒斯特国家计量研究院 (INM) Richard Hogstrom 博士 芬兰埃斯波计量和认证中心 (MIKES) Emilio Prieto 博士 西班牙马德里西班牙计量中心 (CEM) 摘要 本指南的目的旨在向读者介绍纳米颗粒尺寸测量中的一些关键计量方面。强调了可追溯性和不确定性分析在获得有意义的测量结果方面的关键作用。回顾了纳米材料分析中常用的几种常见技术,并为每种技术给出了不确定性计算的示例。这些技术是电子和扫描探针显微镜的高分辨率技术,可以分辨单个粒子,以及动态光散射和小角度X射线散射的集合方法,可以同时分析数千个粒子。还提供了现有相关标准的列表。
摘要:通过纳米载体分子进行靶向药物输送可以提高癌症治疗的效率。靶向配体之一是叶酸 (FA),它对叶酸受体具有高亲和力,而叶酸受体在许多癌症中过度表达。本文,我们描述了含有量子点 (QD) 和 β -环糊精 (β -CD) 的纳米缀合物的制备,这些纳米缀合物具有叶酸靶向特性,可用于输送抗癌化合物 C-2028。C-2028 通过与 β -CD 的包合物与纳米缀合物结合。研究了在 QDs-β -CD(C-2028)-FA 纳米缀合物中使用 FA 对癌细胞(H460、Du-145 和 LNCaP)和正常细胞(MRC-5 和 PNT1A)中的细胞毒性、细胞摄取和内化机制的影响。使用 DLS(动态光散射)、ZP(zeta 电位)、耗散石英晶体微天平 (QCM-D) 和紫外可见光谱法对 QDs-β-CD(C-2028)-FA 进行了表征。C-2028 与无毒 QDs 或 QDs-β-CD-FA 的结合不会改变该化合物的细胞毒性。共聚焦显微镜研究证明,在纳米结合物中使用 FA 可显著增加输送化合物的数量,尤其是对癌细胞而言。QD 绿 - β-CD(C-2028)-FA 通过多种内吞途径以不同水平进入细胞,具体取决于细胞系。总之,FA 是一种在 QDs 平台中用于向癌细胞输送药物的良好自导航分子。
