图 1 多焦点打印的不同光束分裂方法概览。a 宽带激光束照射衍射光学元件 (DOE) 并衍射成两个衍射级的渲染图。与波长相关的衍射角使入射光束散开。b 渲染图显示多透镜阵列 (MLA),该阵列将入射红色高斯激光束的一小部分聚焦到焦点阵列中。一半的入射激光功率被传输而不会影响焦点阵列。c 入射红色激光束照射 DOE 并在单个光束中衍射的渲染图。使用宏观透镜,每个光束被引导到由单独的微型透镜组成的 MLA 的单个透镜上。这些透镜进一步聚焦每个光束,有效地增加和创建可用于多光子多焦点 3D 打印的焦点阵列(焦点扩展函数仅有微小扩展)。
注释和定义:光束范围为50%中心梁烛台(CBCP)。d =距地板或墙壁的距离。fc =脚candles在中心梁瞄准位置的地板或墙壁上。l =有效的视觉光束长度为英尺(最大脚轮水平的50%)。w =有效的视觉光束宽度为英尺(最大脚界水平的50%)。cb =跨或向下到中心梁位置的距离。
今年的用户运行以非常积极的态势开始,因为 BESAC 评审小组对同步辐射设施的未来,特别是 SSRL 的未来给予了积极评价。然而,正如 Keith Hodgson 在 1997 年用户大会上指出的那样,在不久的将来,有许多具有挑战性的任务需要关注,以便 SSRL 保持高水平的生产力和高质量的用户光束时间。您的用户组织执行委员会一直积极代表您与 SSRL 实验室管理小组 ( LMG ) 合作,以解决其中的许多问题,例如:1) 扩大用户群和光束时间的可用性,2) 开发新的光束线和功能,3) 维持强大的支持人员,4) 最先进的计算和基于网络的工具,以及 5) 诊断和提高光束稳定性。
光纤激光器引起了人们的想象,因为在短期内需要光束组合的功率高达 100kW,在未来则需要多 MW。它们近乎完美的光束质量、稳定性和多功能性,再加上增益介质的低成本,使它们成为相干组合多达 1000 个单独光纤放大器光束的理想选择。使用源自电信的光纤电路,我们可以设想全光纤激光电路和系统,它们坚固耐用、易于运输,并且可以直接管理热负荷。后一个属性来自大的表面积与体积比、光纤激光器的效率和二氧化硅的热稳定性。对于坚固的单个光纤激光发射器来说,几千瓦可能是实用可靠的最佳点,我们需要考虑光束组合以缩放功率,无论是空间、波长还是相干。相干光束组合(如在合成孔径雷达中)具有可操纵性和内置自适应光学的属性。然而,顾名思义,我们需要从每个光纤发射器以稳定的偏振光束输出相干的单频,这并不简单。本文将回顾高功率单频激光器的进展,以及该技术的预期局限性。本文还将回顾高功率脉冲光纤激光器的最新研究,以及光束组合的前景,以克服由于光纤束尺寸小而导致的脉冲能量限制
虽然共聚焦显微镜是生物医学成像实验室的主力,为图像对比度和质量树立了黄金标准,但逐点获取图像的速度本来就很慢。为了突破这一速度障碍,Photon Force 客户使用 PF32 构建了开创性的多光束共聚焦显微镜架构:用光束阵列取代典型共聚焦显微镜的单光束和针孔,以快速扫描图像平面。返回点与 SPAD 阵列的感光区域对齐,这些区域充当虚拟针孔,可阻挡失焦光。由于每个光束和 SPAD 阵列像素对都完全独立且并行运行,因此最终的系统可以将共聚焦荧光寿命显微镜的速度提高几个数量级。
为了最大限度地减少大范围无线光通信 (WOC) 应用中的发散并扩大潜在的链路范围,可以使用位于传输光纤端点焦距处的适当准直透镜对光束进行准直,以减少光束扩散的影响。使用靠近接收光纤端点的类似透镜将光束重新聚焦回光纤中。本报告深入探讨了与研究类似自由空间光通信系统相关的概念,并从理论上优化接收光束点尺寸以确保接收数据信号的最大效率。在研究真实系统时,考虑大气条件至关重要,因为它们具有重大影响。此外,本文还回顾并讨论了最近的进展和发展。
在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设平均完全从故障中恢复需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。
在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设从故障中完全恢复平均需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。
1 波尔多大学天体物理学实验室波尔多,法国国家科学研究中心,佩萨克,法国 2 法国国家科学研究中心天体物理学和行星研究所,法国图卢兹,UPS,法国国家空间研究中心 电子邮件:benoit.lavraud@irap.omp.eu 3 AKKA,法国图卢兹 4 捷克布拉格查尔斯大学数学与物理学院表面与等离子体科学系 5 大学学院 Mullard 空间科学实验室London, Holmbury St. Mary, Dorking, Surrey, UK 6 INAF-Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, 00133 Roma, Italy 7 西南研究所,圣安东尼奥,美国 8 德克萨斯大学圣安东尼奥分校物理与天文学系,圣安东尼奥,德克萨斯州,美国 9 Laboratoire de Physique des Plasmas, Ecole法国帕莱索理工学院 10 系密歇根大学气候与空间科学与工程系,美国安娜堡 11 伦敦帝国理工学院 Blackett 实验室空间与大气物理学系,英国伦敦 12 法国奥尔良大学 LPC2E,法国国家科学研究中心,法国奥尔良 13 法国默东 LESIA 14 意大利卡拉布里亚大学物理系,意大利伦德 15 意大利航天局 ASI,意大利罗马 16 美国加州大学伯克利分校空间科学实验室 17 西班牙穆尔西亚穆尔西亚大学 18 瑞典斯德哥尔摩 KTH 19 美国新罕布什尔大学空间科学中心,新罕布什尔州达勒姆 03824 20 欧洲空间局 (ESA),欧洲空间天文学中心 (ESAC),西班牙马德里 Villanueva de la Cañada,Camino Bajo del Castillo s / n,28692