图 1.1:粒子物理学的标准模型,其中夸克及其反夸克伙伴为紫色,轻子和反轻子为绿色,规范玻色子为红色。该图还包括黄色的标量玻色子 [11]。
它被设计为高完整性安全系统的一部分,具有重力封闭和强制连接功能。当关闭时,快门将进入的激光光束反射到内部光束转储处,在那里能量被转换成热量,并散发到快门内的铝壳中。当快门打开时,激光光束穿过快门而不会中断。
光束线的设计旨在支持各种基础物理实验,这些实验旨在解答有关宇宙中物质的性质和存在的问题,并由同行评审分配访问权限和时间。由于这类实验几乎总是受到统计限制,因此光束线的设计旨在提供最高强度的脉冲中子,尤其是冷中子,同时还提供充足的地面空间来安装实验。
摘要 - 使用多模纤维用于越来越多的应用,例如光电信,内窥镜成像或激光束成型,这是一个上升趋势,这些应用需要了解纤维特性。在本文中,我们提出了一种新方法,用于从一组没有干涉测量的斑点输出模式中学习多模光纤的复杂传输矩阵。在第一步中,我们的方法找到了一个模型,可以预测多模纤维远端相干光束的强度模式。在第二步中,通过在远场中使用一些额外的强度图像来改进该模型,从而预测了实际的3D复合场,而无需使用参考光束,就可以预测离开多模纤维。我们的两步方法通过标准的50µm核直径踏板纤维在数值和实验上进行了验证,该纤维在1064nm时指导高达140 LP模式。在实验上,使用验证集,我们在近场和远场的纤维输出处获得了预测和真实斑点图像之间的相似性和98.5%的相似性,证明了检索到的复杂传输矩阵的准确性。最后,我们成功地在两个平面中同时证明了图像的投影,以证明复杂场塑造的证明。索引术语 - 机器学习,多模纤维,复杂传输矩阵,无参考方法,可变形镜
如今,定制激光束很少使用,因此错失了优化现有工艺或引入新工艺的机会。动态光束整形的新方法有可能在未来改变这一现状。这篇主题论文讨论了允许在这样的时间尺度上将瞬态能量输入到工件中的方法,从而引导底层交互过程朝着期望的结果发展。它展示了原理,对必要的系统技术进行了分类,并给出了应用示例,以使读者熟悉该主题。它假定瞬态能量输入和所解决的工艺特征之间的时间尺度相关耦合是实现最佳效果的关键。© 2024 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)
摘要:轨道角动量 (OAM) 用方位角相位项 exp ð jl θ Þ 描述,具有具有不同拓扑电荷 l 的不受约束的正交态。因此,随着全球通信容量的爆炸式增长,特别是对于短距离光互连,光承载 OAM 由于其正交性、安全性以及与其他技术的兼容性,已证明其在空分复用系统中提高传输容量和频谱效率的巨大潜力。同时,100 米自由空间光互连成为“最后一英里”问题的替代解决方案,并提供楼宇间通信。我们通过实验演示了使用 OAM 复用和 16 进制正交幅度调制 (16-QAM) 信号的 260 米安全光互连。我们研究了光束漂移、功率波动、信道串扰、误码率性能和链路安全性。此外,我们还研究了 260 米范围内 1 对 9 多播的链路性能。考虑到功率分布可能受到大气湍流的影响,我们引入了离线反馈过程,使其灵活控制。
I16 是一条位于 Diamond Light Source 的高通量、高分辨率 X 射线光束线。该光束线工作在 2.7-15 KeV 范围内,是一种专为研究单晶样品的共振和磁散射过程而优化的衍射设备 [1]。共振弹性 X 射线散射是表征材料的电子、磁性和结构特性的理想选择,因为它对原本较弱的散射过程具有增强的灵敏度,可提供光谱信息和化学选择性。I16 的主仪器是一台大型 6 圆 K 衍射仪,能够适应各种辅助环境。该光束线可完全控制其大部分能量范围内的入射光子偏振。它与大光子计数面积探测器和安装在 K 衍射仪上的真空线性偏振分析仪相结合,用于隔离和增强与有序现象相关的特定散射过程。
*通讯作者:ysubaar@gmail.com摘要放射疗法的准确性和一致性对于癌症治疗至关重要。然而,诸如机器故障之类的技术问题会损害辐射输送,从而导致剂量分布,冷点或冷点,以及包括局部肿瘤复发在内的次优治疗结果。本研究评估了Komfo Anokye教学医院的Varian Clinac IX线性加速器的光子束参数,以确保机器的临床可靠性。梁曲线的6 mV和16 mV光子能量。在不同的深度进行10×10cm²和15×15cm²的场尺寸进行测量。对于10×10cm²的场尺寸,6 mV光子能的梁平整度和对称性分别为0.88%至2.22%和0.25%至0.25%至0.78%,分别为15×15cm²的场尺寸,分别为1.39%至2.39%至2.34%至2.34%至0.57%至0.57%至0.96%。16 mV光子能量的平坦度和对称性范围从1.98%到2.42%至2.42%和0.36%至1.04%的场尺寸,从15×15cm²的场地尺寸为1.25%至2.25%至2.55%至0.25%至0.25%至0.25%至0.67%。6 mV光子的测得的电荷为16.59 NC,而16 mV光子能量为19.28 NC。调查结果表明,线性加速器在临床使用方面处于良好状态。但是,建议进行定期的质量控制检查以保持其性能并确保一致,准确的癌症治疗。
摘要在当今和未来的无线通信中,尤其是在5G和6G网络中,机器学习(ML)方法至关重要。可能会带来许多好处,例如增加数据吞吐量,提高安全性,延迟减少以及总体上提高网络效率。此外,为了促进实时情况下大量数据的处理,机器学习用于无线网络中的各种功能。本文旨在探索机器学习的重要性和应用,并在预测无线通信场景中的最佳光束配置的背景下,特别关注经典的增强学习。我们的目标是通过找到最佳光束成形角度来最大程度地减少发射机之间的干扰。为此,部署了射线追踪技术。我们将这项研究视为将数字双(DT)技术集成到网络管理和控制中的一步。在本文中,使用了不同的机器学习方法,并比较了它们的性能。首先,确定了波束形成,最大化通道容量的最有效角度。然后,通过使用这些方法并在验证其准确性后,发现并评估了发射器和接收器数量增加的情况下的最佳天线角度。
Excelitas 应用工程师 Matthias Koppitz 表示:“凭借 30 多年开发激光材料加工光学系统的经验,我们种类繁多的电动 LINOS 扩束器因其能够满足最严格的要求而闻名。” “我们适用于 340 nm-360 nm 波长范围的新型 LINOS 扩束器 1x-4x 延续了这一传统。它更小巧紧凑的尺寸和无色阳极氧化处理可确保满足激光系统对各种紫外线应用制造的光子需求的各个方面。” 适用于 340 nm-360 nm 的新型 LINOS 扩束器 1x-4x 将于 2022 年 6 月 21 日至 23 日在德国斯图加特的 LASYS 上展出(Excelitas 展位号 4E13,4 号厅)。欲了解更多信息,请访问产品网页:https://www.excelitas.com/product/linos- motorized-variable-magnification-beam-expander 。