摘要 - 在本文中,通过有限元方法(FEM)研究了等离子bragg光栅过滤器的微型设计。过滤器基于沉积在石英基板上的等离激元金属 - 金属波导。为近红外波长范围设计的波纹布拉格光栅均在波导的两侧结构。通过改变过滤器设计的几何参数来研究过滤器的光谱特性。结果,在λbragg= 976 nm处获得的最大ER和带宽为36.2 dB和173 nm,滤光片占地面积分别为1.0×8.75 µm 2。可以通过分别增加光栅周期和光栅的强度来进一步改善ER和带宽。此外,Bragg光栅结构非常容易接受介质的折射率。这些特征允许使用材料,例如金属 - 绝缘体 - 金属波导中的聚合物,可以进行外部调整,也可以用于折射率传感应用。所提出的Bragg光栅结构的灵敏度可以提供950 nm/riU的灵敏度。我们认为,本文提出的研究提供了一个指南,以实现可用于过滤器和折光索引传感应用中的小脚印等离子布拉格光栅结构。
液晶(LC)全息光栅用于多种光学应用,包括安全性,密码学,数据固定,光学过滤器和显示器。1–3通过两种相干激光束的干扰,将全息光栅放入LC,单体和引发剂的混合物中,这些激光束在单体和液晶的混合物中形成了空间调节的折射率变化。文献中已经报道了两种类型的全息图案液晶光栅:传播和反射光栅。在传输光栅中,两个相干激光束在同一样品区域上通过样品传输。对于反射光栅,将两个梁暴露于相反的样品平面,从而形成平行于样品表面的层结构。据报道,分层的液晶光栅是policryps(聚合物液晶聚合物切片)4-7或全息图
摘要 - 我们提出并在实验上基于双波长DFB激光器,基于四个相移的Moiré光栅(4PS-SMG)。通过在山脊波导的每一侧设计4PS光栅,在腔内的两侧进行了等效的引入,从而实现了两种π相移,从而使设备能够展示双波长激光。山脊波导每一侧的4PS-SMG的采样周期分别为4668 nm和4609 nm。可以通过电子束光刻(EBL)以高质量实现采样周期的59 nm差异。此外,侧壁光栅结构只需要一个暴露才能定义山脊波导和光栅,从而避免了与光栅和山脊波导之间的未对准有关的问题。将电流注入130 mA至210 mA范围内的DFB激光器时,该设备会提供出色的双波长性能,其功率差在两种主要模式之间的功率差不到2 dB。该设备在39.4 GHz处提供高质量的射频(RF)信号,狭窄的线宽约为5.0 MHz。索引项 - 毫米波,双波长DFB激光器,DFB半导体激光器,采样Moiré光栅。
随着纳米级制造技术的高级,光子综合电路的速度和能源效率获得了流动性。一个主要的挑战涉及纤维和纳米光学设备之间的耦合。一个有希望的解决方案是使用光栅耦合器,它可以在芯片上的任何位置正交近似光。虽然已经在SOI平台上牢固地建立,但近年来,它们在诸如罪恶之类的低指数平台上也变得至关重要。这个相对较新的材料平台的特征是其低传播损失和出色的功率处理能力,使其对广泛的应用具有吸引力。虽然标准的光栅耦合器有效地将仅具有一个极化的光,但是无论其极化如何,极化的拆卸光栅耦合器都可以将光线磨合。后者尚未在罪恶平台上实现,使他们的调查特别值得。本文使用FDTD仿真确定了关于sin上2D光栅耦合器设计的操作参数。模拟的最大耦合效率为51。8%,无需使用任何其他返回反射器。此外,还探索了sin上极化的光栅耦合器的发展,其中3D模拟表明这项工作是可以实现的。
摘要:飞行器的安全监测与跟踪越来越重要。在气动载荷作用下,飞行器机翼会产生较大的弯曲和扭转变形,严重影响飞行器的安全。飞行器机翼载荷的变化直接影响飞行器基线的地面观测性能。为了补偿机翼变形引起的基线变形,需要准确获取机翼外形的变形量。传统的飞行器机翼外形测量方法不能同时满足体积小、重量轻、成本低、抗电磁干扰、适应复杂环境等要求,用于飞行器机翼外形测量的光纤传感技术已逐渐被证明是一种具有许多优良特性的实时、在线动态测量方法。本文综述了光纤光栅传感器(FBG)的原理、技术特点和胶接技术。对比分析了其他测量方法的优缺点,重点分析了FBG传感技术在飞机机翼外形测量中的应用现状。最后对提高基于FBG传感技术的飞机机翼外形测量精度提出了综合建议。
光涡流具有通过利用轨道角动量的额外自由度来增加数据容量的巨大潜力。另一方面,各向异性2D材料是对未来综合偏振敏感光子和光电设备的有希望的构建块。在这里,用在超薄2d仙境植物燃料上构图的叉全息图证明了高度各向异性的第三谐波光学涡流束的产生。表明,各向异性非线性涡流束的产生可以独立于叉形方向相对于晶体学方向而实现。此外,2D叉全息图旨在产生具有不同各向异性反应的不同拓扑电荷的多个光学涡旋。这些结果铺平了迈向基于2D材料的各向异性非线性光学设备,用于光子整合电路,光学通信和光学信息处理。
相干的光藻效应导致在相干光束的吸收干扰下产生电流,并允许铭文的空间充电光栅铭文,从而导致二阶敏感性(𝝌(2))。铭刻的光栅会自动导致干扰光束之间的准阶段匹配。理论和实验研究,考虑到第二次谐波产生的堕落病例,显示出显着的转化效率提高。然而,理论和实验之间的联系尚未完全确定,因此对于给定材料平台的一般准则和可实现的转换效率仍不清楚。在这项工作中,在理论上分析了光学波导中相干光钙化效应的现象学模型。该模型预测了非排优体总和生成的存在准阶段匹配光栅,这是第一次在实验中确认。此外,配制了连贯的光藻过程中空间充电光栅铭文的时间动力学。基于开发的理论方程式,提取了氮化硅化学过程的材料参数。获得的结果提供了比较不同平台的性能和潜力的基础。这项工作不仅补充了一致的光钙效应理论,而且还使我们能够确定关键参数和限制因素,以铭文(2)光栅。
据我们所知,这是在 LNOI 平台上首次演示高阶模式通带滤波器。我们的模式滤波器体积小、损耗低、MER 高、功能可扩展,与其他材料平台上报道的器件相比,是一种极具吸引力的选择(详情请参阅支持信息 S5)。此外,我们的器件还可以使用微电子行业开发的成熟的 CMOS 兼容蚀刻工艺来制造,同时保留了基于 LNOI 平台探索高速电光器件和高效光学非线性器件的能力。