• 短和长工作距离设计 • 高耦合效率 • 高重复性和稳定性 • 在光栅耦合器锥度处,平面前波与光束近乎准直 • 可以实现超长工作距离 (WD) – 例如高达 >800 μ m • 在 Z 方向(光束传播方向)对垂直方向具有耐受性
•表2详细介绍了每个GDS层的最小特征大小,最小间隙和最大特征宽度。•表2中列出了每个GDS层的目标临界维度。请注意,其他特征大小可能具有较小的维偏差。•建议至少5μm的波导之间的最小间距,以避免功率耦合。•GDS层之间至少有200 nm的重叠对于解释层之间的一致性公差至关重要。•在GDS第6层中绘制的所有结构(如果是光栅耦合器)必须与GDS第3层(波导)至少重叠200 nm,以说明对齐误差。•GDS层39(加热器丝)和GDS 41(加热器接触板)之间至少有10 µm的重叠,以实现最佳的加热器性能。•确保在GDS第6层中绘制的所有结构(如果是光栅耦合器)不会与GDS层39(加热器丝)或GDS 41(加热器接触板)重叠。
由于制造技术和集成密度成熟,成熟的绝缘体上硅平台在大规模集成光子和量子光子技术中前景广阔。本文,我们介绍了一种高效稳定的光纤到芯片耦合,可将电信量子点的单光子注入绝缘体上硅光子芯片。另外两根光纤将芯片进一步耦合到单光子探测器。实现稳定光纤-芯片耦合的方法是基于使用与成角度的单模光纤稳定封装的光栅耦合器。使用这种技术,光纤和 SOI 芯片之间的耦合效率高达每个光栅耦合器 69.1%(包括锥度损耗)。通过使用 Hanbury-Brown 和 Twiss 装置测量二阶相关函数,验证了量子点产生的量子光与硅元件之间的有效界面。通过 g = 2 = 0 = 0 : 051 6 0 : 001,清楚地证明了注入的 QD 光子的单光子性质。这证明了接口方法的可靠性,并开辟了使用电信量子点作为具有高复杂性硅光子功能的非经典光源的途径。
光反射在许多现代技术中起着至关重要的作用。本文给出了由单一材料制成的通用平面结构在任何方向和任何偏振下的最大反射功率的解析表达式,该结构由复杂的标量磁化率表示。最大化反射的最佳光物质相互作用问题被表述为感应电流优化问题的解,受能量守恒和被动性约束,通过使用拉格朗日对偶,该问题允许全局上限。导出的上限适用于广泛的平面结构,包括超表面、光栅、均质膜、光子晶体板,更一般地说,适用于任何非均匀平面结构,无论其几何细节如何。这些界限还设定了给定有损材料的最小可能厚度的限制,以实现所需的反射率。此外,我们的结果允许发现与现有设计相比,反射结构效率可以大幅提高的参数区域。给出了这些发现对设计由真实的、不完美(即有损)材料制成的优质紧凑反射元件的影响的例子,例如超薄高效的光栅、偏振转换器和用于太阳/激光帆的轻型镜子。
摘要:提出了一种由级联微环谐振器和AWG组成的高分辨率集成光谱仪,实现了0.42nm的高分辨率和90nm的带宽,在生化传感应用方面有很高的潜力。OCIS代码:(300.6190) 光谱仪;(130.3120) 集成光学器件;(130.6010) 传感器。引言当前光谱仪领域最重要的研究之一是基于平面集成光波导技术的光谱仪,其结构多种多样,例如阵列波导光栅(AWG)[1]、中阶梯光栅[2]、微环谐振器(MRR)[3]和波导傅里叶变换(FT)光谱仪[4-5]。其中,对AWG和EDG等分光式传统光谱仪的研究已经持续了很长时间。在我们之前的工作中,我们提出并演示了一种基于级联 AWG 和可调微环谐振器阵列的高分辨率、宽带宽集成光谱仪 [4]。然而,每个通道的微环都需要调谐,这非常耗时。在本文中,我们提出了一种将热调谐 MRR 与 AWG 级联的结构来制作高分辨率光谱仪,从而减少了微环阵列调谐所花费的时间。
原子质波的干涉法是基础科学1-5的必不可少的工具,对于应用的量子传感器6-10。干涉仪尺度的敏感性随衍射物质波的动量分离而导致大动量传递束分裂器的发展11,12。然而,尽管进行了数十年的研究,但对于动量转移13,由于第一个原子衍射实验以来使用的结晶光栅仍然是无与伦比的。到目前为止,仅报道了亚原子颗粒的衍射,但从未针对原子。在这里,我们通过在正常入射率下通过单层石墨烯证明了氦气和氢原子在基尔洛克素伏元能的衍射,以回答这一百年历史的挑战。尽管原子的高动能和与石墨烯电子系统耦合,但我们观察到衍射模式具有多达八个相互晶格向量的相干散射。衍射是可能的,从而限制了动量转移到光栅上。我们的演示是Thomson和Reid 14,15的第一次传输实验的原子对方,从而解开了原子衍射中的新电位。我们希望我们的发现能够激发未知能源制度中的破坏性研究以及新的基于物质波的传感器的发展。
集成的布拉格光栅无处不在,在光学通信中找到了他们的主要应用。它们主要用作波长划分多路复用(WDM)的过滤器[1]。它们在激光器中用作分布式Bragg反射器(DBR)[2]和分布式反馈(DFB)激光器[3]的镜子。他们还找到了他们在传感中的应用[4]。此外,它们是集成腔分散工程的重要组成部分[5,6]。集成的Bragg反射器已使Fabry-Pérot(FP)微孔子中有趣的表演达到了实现。仔细研究这些空腔,对分散补偿策略的兴趣不大,例如,将分散元素补偿元素在空腔体系结构中[5]进行了整合。使用色散bragg反射器证明了综合微孔子中的耗散kerr孤子(DKSS)[7]。通常需要这些光源来产生非常短的脉冲持续时间,即飞秒级,用于高精度计量学级的飞秒源的应用,并用于产生跨越频率的宽带频率梳子,这些频率从数十吉赫赫兹到Terahertz。这种非线性机制开辟了增加相干光学通信系统带宽[8,9]的可能性,以满足增加的数据速率需求。最近,由两个光子晶体谐振器组成的Q-因子为10 5的纳米制作的FP谐振器已成功证明了KERR频率 - 兼而产生[10]。这个概念是在反射器的背景下进行分析描述的。因此,在FP微孔子中,布拉格反射器的广泛采用以进行分散补偿变得越来越重要。虽然用作反射器的Bragg光栅提供了广泛的功能,但设备物理学中存在一个潜在的问题。当光反射器反射光时,它不会从光栅开始的点上进行反映。为了解决这个问题,研究人员检查了渗透深度的概念或闪光的有效长度,称为l eff。该术语是指定义实际反射点的bragg反射器内的虚拟移位接口。
近年来,在液晶(LCS)中观察到了在折射率光栅上耦合的光束之间的强两光束能传递。由于LC主管的重新定位而获得的0.2阶折射率的高调制使得可以增加一个梁的强度,并具有增益系数的强度近两个数量级,而固体光致热晶体中的强度几乎要大[1-6]。在具有杂化有机 - 无机细胞A LC层的方案中,将两个固体底物放置在两个或两个固体底物之间,其中一个或两个是光致热的。相交的相干光束会干扰并产生无机光致热性底物(S)中的空间电荷。空间电荷会产生一个空间周期性的电场,该电路穿透LC层并调节LC主管。由此产生的主管光栅引起折射率光栅,并确保在LC中传播的相交梁的耦合[7-11]。在讨论混合系统中主管重新定位的机制时,通过与LC旋转极化的相互作用[12-14],而不是通过LC静态介电性各向异性[15,16],而不是通过LC旋转极化[15-16],这是与董事与主任的太空场合的夫妇。对列中[12]和胆固醇LC细胞获得的实验结果的描述[13,14]需要一个额外的假设,使导演幅度是空间载体范围的非线性函数。这导致通过其有效的值替换了外部的系数,这取决于空间电荷范围。在[12]中讨论了这种非线性的可能物理机制。Despite the fact that the physical mechanism of interaction of the space-charge field with the director is the same for nematic and cholesteric LCs, the observed dependence of the gain coe ffi cient of the incident signal beam on the director grating spacing is very di ff erent.增益系数定义为
1 计算机图形学和图元基础:计算机图形学术语、计算机图形学应用、显示设备、随机和光栅扫描系统、图形输入设备、图形软件和标准。点、线、圆和椭圆作为图元,图元的扫描转换算法,填充区域图元包括扫描线多边形填充、内外测试、边界和填充、字符生成、线属性、区域填充属性、字符属性。
摘要:我们提出了一种由二氧化钛 (TiO 2 ) 亚波长光栅制成的双谐振纳米结构,以提高 Cd x Zn 1 − x Se y S 1 − y 胶体量子点 (QDs) 在用 ∼ 460 nm 的蓝光激发时发射波长为 ∼ 530 nm 的颜色下转换效率。通过光栅谐振和波导模式的混合,可以在 QD 层内创建大的模式体积,从而导致大的吸收和发射增强。特别是,我们实现了偏振光发射,在特定角度方向上最大光致发光增强约 140 倍,在收集物镜的 0.55 数值孔径 (NA) 内总增强约 34 倍。增强包括吸收、Purcell 和外耦合增强。我们实现了绿色 QDs 的总吸收率为 35%,颜色转换层非常薄,约为 ∼ 400 nm。这项工作为设计用于微型 LED 显示器、探测器或光伏应用中的吸收/荧光增强的大体积腔体提供了指导。关键词:导模共振、二氧化钛、介电纳米天线、颜色转换、胶体量子点、微型 LED 显示器