准确的映射和本地化(Dill&Uijt de Haag,2016年)对于自动驾驶汽车等自主系统(Advs; Huang等,2019)和室内移动机器人技术(Hess等,2016)都是重要的。付出了巨大的努力,致力于使用3D光检测和范围(Lidar; Hess等,2016)传感器的稳健性与基于视觉的SLAM方法相比,使用3D光检测和范围(Lidar; Hess等,2016)传感器实现了准确的同时定位和映射(SLAM)(SLAM)(Qin等,2018,2018)。基于视觉的大满贯基于被动传感器(例如相机)可能对照明和观点变化敏感。相反,像3D激光雷达这样的主动传感器可以为周围环境提供距离测量,而环境不变。出色的鲁棒性和精确度使3D LiDAR成为用于大规模映射和本地化的必不可少的传感器。
背景和目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用不同分辨率的数字高程数据集开发的洪水模型的精度统计数据,这些模型来自光检测和测距以及干涉合成孔径雷达系统。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量和均方根误差统计测试了模型的有效性和准确性。发现:结果表明,使用光检测和测距数据集,该模型的准确率分别为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,该模型的误差矩阵、f 测量和均方根误差的准确度分别为 76%、0.34、0.53。结论:使用光检测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型具有更高的准确度。尽管如此,考虑到模型实施成本和较小的精度残差误差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗的数据集来优化洪水模拟和测绘工作的预算。
_____对于非常弱的信号的光检测是有用的,这是一种光学设备,其中光子的吸收会导致电子的发射。这些检测器通过放大暴露于光子通量的光电阴道产生的电子来起作用 *
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
LiDAR 传感器(光检测和测距)是一种遥感技术,它使用激光测量距离并创建周围环境的详细、准确和三维表示。LiDAR 系统发射激光脉冲,激光脉冲从物体反弹后返回所需的时间用于计算距离并创建该区域的精确地图。
该方法包括课堂教学和实验室实验。教学会议将重点关注探测器和成像设备的基本概念和原理,各种显示技术和成像处理的基本原理,这些基础与学习成果有关。实验室会议将增强学生使用各种设备进行光检测和显示的能力。
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
本课程提供电磁场的半经典描述及其量子力学量化。它使用量子力学算子处理光腔、光学相干性、干涉测量和光检测。它还考虑了原子场相互作用、Jaynes-Cummings 模型、开放量子力学系统分析以及离散系统。5. 本课程的先决条件(如果有):无
我们评估遥感数据以监测环境并开发用于灾害控制的态势感知系统。为此,我们开发了图像评估算法、数据预处理流程链以及从立体图像数据生成 3D 信息。除了来自光学传感器的数据外,还处理来自 SAR(合成孔径雷达)和激光雷达(光检测和测距)的信号。
我们评估遥感数据以监测环境并开发用于灾害控制的态势感知系统。为此,我们开发了图像评估算法、数据预处理流程链以及从立体图像数据生成 3D 信息。除了来自光学传感器的数据外,还处理来自 SAR(合成孔径雷达)和 Lidar(光检测和测距)的信号。