摘要:太空和地面任务测量大气中宇宙射线、伽马射线和中微子产生的大面积空气簇射,需要在不同时间尺度上探测非常微弱和强烈的紫外-可见光。新一代硅光电倍增管 (SiPM) 的特性适合于此目的,尤其是对于需要以下特性的太空任务:耐光、重量轻、功耗低和固有增益高。SiPM 的高性能探测能力使其有望用于电荷积分(需要信号中的总电荷量)以及光子计数(需要极高的光电探测器灵敏度,如切伦科夫和荧光光探测)。同时在两种模式下操作 SiPM 的能力实际上严格取决于前端电子设备 (FEE) 的设计。最重要的挑战是找到适当的平衡和可行的解决方案,以便管理带有 FEE 的 SiPM,使其能够同时高效地进行光子计数和电荷积分。在本文中,我们介绍了 RADIOROC,这是一种新型 ASIC,能够同时在两种模式下工作:这样它就能够获取切伦科夫和荧光信号。RADIOROC 将用于创新实验 MUCH,这是一种使用大气切伦科夫成像技术的望远镜,用于探测来自 μ 子切伦科夫光,用于火山射线照相术(μ 射线照相术)以及任何需要对地质或工程结构进行非侵入性射线照相检查的地方,即使是相当大的结构。
摘要。已经开发了基于相干检测的低成本激光检测系统,即使在明亮的背景光中,也能够检测到弱,连续的激光源。该系统由Mach - Zehnder干涉仪组成,其中一个手臂用压电的镜子修饰,以调节路径长度。我们介绍了确定激光波长并扩展检测器视野的方法。为了扩大视野,将锥镜添加到系统中,而相机的额外使用则可以研究传入激光束的方向。通过使用压电镜的调制幅度估计来自三个不同激光器的波长。可以实现360度水平视场的初步结果,并且可以用估计的角精度为5度确定激光束的方向。此外,可以用10 nm的精度确定波长。系统在635 nm处将系统交易的灵敏度转换为较大的视野,而最终的检测灵敏度等于70 nW(或1μW·cm -2)。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.oe.60.2.027106]
激光器现在是一项普遍的技术,具有许多熟悉的应用程序,包括沟通,材料处理,3D扫描,印刷,医疗应用等等。激光辐射的产生需要热力学平衡的不平衡,以至于只有高度不寻常的天体物理量表现象才能在自然界中产生激光[1]。所有其他激光均经过设计和使用。使用的目的是驱动军事愿望检测激光的意图。激光器的军事应用包括范围查找,目标名称,激光耀眼和导弹控制[2]。军方感兴趣的大多数激光是脉冲激光器。时间分辨率和高瞬时亮度使它们非常适合在范围检测器和目标标记等应用中在许多公里的范围内运行。已经开发出激光华纳接收器(LWRS)来检测这些激光器所带来的威胁[3] [4],并允许辐射的平台启动由感知的威胁确定的适当的对策。在过去的几年中,连续波(CW)可见的激光二极管的优势产生了更广泛的危害 - 所谓的激光指针。手持式可见激光器具有几个瓦的功率,可容纳几百美元,波长不断扩展。这些激光被证明是一种威胁,当他们接近降落时,它们朝向飞机,并有1500多个报道称,去年英国和美国令人眼花azz乱的飞行员。CW激光器是激光检测世界中的特定挑战。常规LWR在检测这些激光器方面表现不佳,因为它们依赖于使用脉冲激光器观察到的亮度的快速时间变化。Wang [5]将激光检测分为三类 - 相干识别,散射识别和频谱识别。这些是基于观察到的类别而不是区分特征。Benton [6]采用了基于歧视技术 - 成像,光谱和连贯性的分类方法。前两个类别本质上都是
可再生能源的未来依赖于发现用于高密度储能的新材料。1 由于其多功能性、高极化电位和介电常数,铁电 (FE) ABO 3(A、B = 各种金属离子)钙钛矿是电容器技术中一类受欢迎的材料。2、3 PbTiO 3 和类似的钙钛矿基电容器由于 A 位 (Pb) 与 O 的偏心杂化而表现出出色的能量存储密度。3 然而,Pb 的毒性限制了它们的商业使用,因此需要无铅 FE 替代品。4 遗憾的是,由于 BO 6 八面体旋转/倾斜的反铁电畸变 (AFD) 畸变,导致中心对称 Pnma 空间群的优先稳定,室温下无铅 ABO 3 钙钛矿中的 FE 不稳定性受到抑制。 5 缺陷工程(Ca 掺杂、氧空位等)已被有效利用,通过修改 ABO 3 钙钛矿中的局部 A/B 位对称性来克服这些 AFD 畸变。6 传统上,
1.01 加勒比共同体气候变化中心(简称“中心”)已向加勒比开发银行(CDB)申请赠款,用于建立收集光探测和测距(LiDAR)数据的能力,并代表其借款成员国(BMC)开展 LiDAR 最终用户培训。拟议的技术援助(TA)符合 CDB 支持包容性和可持续增长与发展的战略目标。1.02 它还符合 CDB 的以下目标:(a) 促进环境可持续性、气候变化(CC)适应力、环境管理和灾害风险管理(DRM)的共同优先事项。(b) 气候适应力战略。1.03 该技术援助与特别发展基金第九周期的主题相一致,即通过加强区域和国家机构改善环境和自然资源管理的能力,支持环境可持续性和推进 CC 议程。 1.04 TA 的直接受益者是中心,将负责协调和实施该项目。该项目的间接受益者是 CDB 的 BMC,他们将能够访问 LiDAR 数据以改善其自然灾害和气候风险管理的决策。1.05 该项目的预计成本为 271.9 万 965 万美元(USD2,719,965 百万美元)。CDB 的贡献将来自特别资金资源 (SFR) 的赠款,金额不高于
描述:PRMT1 化学发光检测试剂盒旨在测量 PRMT1 活性,用于筛选和分析应用。PRMT1 化学发光检测试剂盒采用方便的形式,8 孔试纸条预涂有组蛋白 H4 肽底物、针对组蛋白 H4 甲基化精氨酸残基的抗体、HRP 标记的二抗、S-腺苷甲硫氨酸、甲基转移酶检测缓冲液和纯化的 PRMT1 酶,可进行 96 种酶反应。PRMT1 化学发光检测试剂盒的关键是一种高度特异性的抗体,可识别组蛋白 H4 甲基化的 R3 残基。使用此试剂盒,只需三个简单的步骤即可检测甲基转移酶。首先,将 S-腺苷甲硫氨酸与含有检测缓冲液和甲基转移酶的样品一起孵育。接下来,添加一抗。最后,用 HRP 标记的二抗处理试纸条,然后添加 ELISA ECL 底物以产生化学发光,然后可以使用化学发光读数仪进行测量。组件:
本文档中包含的材料按“原样”提供,在未来版本中如有更改,恕不另行通知。此外,在适用法律允许的最大范围内,Agilent 对本手册及其所含任何信息不提供任何明示或暗示的担保,包括但不限于对适销性和特定用途适用性的暗示担保。安捷伦不对因提供、使用或执行本文档或其中包含的任何信息而产生的错误或偶然或间接损失负责。如果安捷伦和用户另有一份单独的书面协议,其中的保修条款涵盖本文档中的材料,且与这些条款相冲突,则以单独协议中的保修条款为准。
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。