操作概念等 参见附录1 研究原型的概要 参见附录2 基本设计结果示例 参见附录3 评估概要 讨论和问题的收集地点 关于本研究原型的设计结果 关于未来的挑战 收到的评论、建议等 将高性能红外摄像机技术确立为国产技术极其重要。特别是在共同的晶体基板上制作具有不同特性的近红外和中红外成像元件的技术被认为是独特且有趣的。研制出在新月条件下也能拍摄夜视图像的成像装置,满足了现代的需求,也获得了高度评价,是一项技术进步。迄今为止,虽然已有近红外传感器的制造报道,但实际应用的报道却很少。因此,开发近红外范围的传感器的目标值得关注。 将来,如果将近红外/中红外双波长组合成一个元件存在很多挑战,包括串扰问题*2,我们相信会考虑使用混合方法,通过考虑近红外和中红外传感器的最佳组合,包括截止波长,为每个传感器使用最高性能的元件。 *2 串扰:使用一个具有两个波长的元件检测光时,两个波长之间的相互影响。 需要采取行动/考虑的事项 无特别事项 摘要 研究进展顺利,我们期待获得满意的结果。
一、光纤通信系统、子系统和网络 光学系统和子系统领域的稿件应关注能够实现前所未有的性能水平、明显超越以前建立的系统、明显超越以前发布结果的渐进式改进或代表总体上最先进的改进的演示。如果光学网络领域的稿件能够显著改善最先进的网络操作和性能,我们欢迎您提交。所有关于底层物理层的假设都必须切合实际,并且必须通过明确的参考资料或论文本身的详细技术描述来证实。专注于网络方面而不管底层物理光路如何的论文不适合在 JLT 上发表。JLT 非常重视实验工作、系统演示和子系统测量性能。如果稿件的技术内容主要包括模拟和理论推导和估算,并且超越了简单的性能优化并使用了切合实际的参数(可能从实验或其他实验论文中提取),我们欢迎您提交这些稿件。模拟或理论性手稿,如果只是为了推导而推导、与现实世界的操作限制脱节、或代表已发表作品的渐进式改进,则不适合在 JLT 上发表。
关于 Tower Semiconductor Tower Semiconductor Ltd. (NASDAQ: TSEM, TASE: TSEM) 是领先的高价值模拟半导体解决方案代工厂,为消费、工业、汽车、移动、基础设施、医疗、航空航天和国防等不断增长的市场提供集成电路 (IC) 技术和制造平台。Tower Semiconductor 致力于通过长期合作伙伴关系及其先进创新的模拟技术产品对世界产生积极和可持续的影响,包括广泛的可定制工艺平台,如 SiGe、BiCMOS、混合信号 CMOS、RF CMOS、CMOS 图像传感器、非成像传感器、集成电源管理(BCD 和 700V)和 MEMS。Tower Semiconductor 还为 IDM 和无晶圆厂公司提供世界一流的设计支持,以实现快速准确的设计周期以及包括开发、转移和优化在内的工艺转移服务。为了向客户提供多晶圆厂采购和扩展产能,Tower Semiconductor 在以色列设有两家制造工厂(150 毫米和 200 毫米),在意大利设有一家制造工厂(300 毫米),
由于普克尔斯效应和克尔效应的结合,电光 (EO) 聚合物的折射率可以通过外部电场改变。在由基质聚合物和嵌入的 EO 发色团组成的客体-主体系统中,普克尔斯效应依赖于可电极化的 EO 发色团的优先空间取向,这通常是通过在施加外部场的同时在高温下极化 EO 聚合物材料而引起的。EO 发色团由通过 π 电子共轭桥相互作用的电子给体和受体基团组成,其特性是 EO 聚合物设计的重要因素。为了最大程度地发挥普克尔斯效应,具有高玻璃化转变温度和分子尺寸相对较大的 EO 发色团的聚合物具有优势,因为它们可以提供最佳的取向稳定性 [ 1 ],这不仅在客体-主体系统中实现,而且在 EO 发色团与主体聚合物共价结合的材料中也实现了 [ 2 ]。在极化过程中,通过热 [ 3 ] 或光化学 [ 4 ] 交联主体聚合物也可提高取向稳定性。电光聚合物在电信领域的应用已被广泛探索 [ 5-7 ],其快速时间响应、低光损耗、高电光活性、稳定性和易于加工等特点已被用于空间光调制器 (SLM) 的开发 [ 8 ]。因此,最近的大部分研究活动都集中在开发近红外波长范围的电光聚合物 [ 9-12 ]。虽然关于可见光范围的电光聚合物的报道相对较少,但此类材料的未来应用可能在于可调光学滤波器和超声波的光学检测,例如用于生物医学光声 (PA) 成像研究的可调法布里-珀罗 (FP) 传感器 [ 13-16 ]。对于此类应用,需要在可见光波长区域具有高度透明性的新型电光聚合物。传统的近红外 EO 发色团虽然通常具有较高的
本文介绍了获取、分析和处理光信号的可能性和方法,以便识别、确定和应对当代战场上的威胁。本文阐述了在电磁波谱的光波段进行电子战的主要方式,包括获取光发射器特征以及紫外线 (UV) 和热 (IR) 特征。本文讨论了描述激光辐射发射的物理参数和值,包括它们在创建光学特征方面的重要性。此外,已经证明,在将光信号转换为特征时,只能应用其光谱和时间参数。本文的实验部分证实了这一点,其中包括我们对三种双目激光测距仪的光谱和时间发射特性的测量。本文还表明,通过简单的配准和快速分析(涉及比较“日盲”波段紫外线特征的发射时间参数),可以快速、准确地识别各种事件。对于红外特征也是如此,需要比较几种波长的记录信号幅度。通过记录并分析训练场军事演习期间发生的几次事件的信号,实验证实了紫外线特征的正确性,这些事件包括火箭推进榴弹 (RPG) 发射和击中目标后的爆炸、三硝基甲苯 (TNT) 爆炸、穿甲弹、尾翼稳定脱壳穿甲弹 (APFSDS) 或高爆弹 (HE)。最后一部分描述了一个拟议的发射器模型数据库,该数据库是通过分析和将记录信号转换为光学特征而创建的。© 2020 中国兵器学会。由 Elsevier BV 代表科爱传播有限公司提供出版服务。本文为 CC BY-NC-ND 许可下的开放获取文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要 - 当波动入射在复杂散射介质上时,由于灭绝而导致的发射强度会从一个事件中差异。在没有吸收的情况下,熄灭的功率等于总散射功率,众所周知的保护定律称为光学定理。在这里,我们将单个入射波的情况扩展到多个传入波的散射和灭绝情况。新兴的广义光学定理具有令人兴奋的后果,即多个入射波显示相互灭绝和相互透明度,而不存在的普通向前散射或自我灭绝。基于两种精确计算的实际计算,包含许多(最多10 4)散射器的现实三维(3D)样本,并且在近似的Fraunhofer差异理论上,我们对两个入射波的总灭绝的总灭绝是大大增强,被称为相互延伸,或相互差异很大,相互差异为近距离单独降低了,这是相互延伸的近相互差异。鉴于令人惊讶的强相互灭绝和透明度,我们提出了新的实验来观察相互灭绝和透明度,即在具有弹性和吸收散射器的两光束实验中,在光学波沿形状中,在动态光散射中,我们讨论了可能的应用。
广域预警监视功能电波/光波组合传感器系统研究[事后评价(内部测试结束时)](策划:防卫装备厅、电子设备研究所、传感器研究部,传感系统实验室)
摘要 —本文介绍了一种从仅具有可见红、绿和蓝数据带的单个高分辨率光学图像中自动检测建筑物的新方法。具体来说,我们首先调查阴影证据以关注建筑物区域。然后,提出了一种基于马尔可夫随机场 (MRF) 的新型区域增长分割技术。图像被过度分割成较小的均匀区域,可用于替换像素网格的刚性结构。然后对该区域集应用迭代分类合并。在每次迭代中,使用区域级 MRF 模型对区域进行分类,然后根据阴影的位置,合并具有相同类别的区域以产生形状适合矩形的新区域。使用递归最小边界矩形确定最终的建筑物。实验结果证明,所提出的方法适用于各种地区(高密度城市、郊区和农村),并且具有高度的稳健性和可靠性。
