尽管已经对物理特性的改进进行了深入研究,但通过开发完全无机的WO 3 - 含糖纳米复合材料来扩大外观(即WO 3涂层的颜色和光泽)的关注较少。Wang及其同事[12]最近报道了一个创新的例子[12],它们结合了结构性色彩与光学索引的变化,从而获得了各种各样的颜色。在使用周期性结构,QU和同事[13]的另一项工作中,制备了逆蛋白石NIO膜。它们根据施加的电压和视角移动颜色,并实现了多种颜色。电致色素透明,半透明和非转交涂层都对节能和先进的材料充满希望:但是,在优化性能和开发专业产品方面,仍然有很多工作仍然存在。[14,15]
多年来,化石燃料的消费不断增加,对环境造成了重大损害,例如全球变暖和能源的消耗[1]。因此,如今,对清洁和可持续的专业人士的发展越来越兴趣。使用绿色方法论偏爱能源脱碳的可能策略之一是使用氢,因为该能量向量可以在对可再生能源资源的开发与环境保护之间产生协同作用。氢生产的最广泛方法是非可再生化石碳氢化合物的蒸汽重整。因此,H 2生产中有48%来自天然气的改革,30%来自石油的改革,而煤炭的改革为18%[2]。最后,氢的4%是由水电解产生的。目前,氢的年生产约为0.1 GT,主要在金属的精炼和加工时在现场消耗,并且在燃料电池中的燃料少量消耗[2]。今天,与基于标准的化石燃料工艺(灰色或黑色氢)相比,其可持续性(绿色)氢生产的最重要局限性,即从可再生能源中获得的H 2。使用太阳作为能量驱动力,可以帮助