由于暴露于高压气态氢,氢环境脆化 (HEE) 所引起的机械性能下降是液氢推进系统中许多材料面临的关键问题。自 20 世纪 80 年代初以来,美国国家航空航天局 (NASA) 一直在马歇尔太空飞行中心 (MSFC) 进行高压氢环境下的拉伸试验,以建立推进应用候选材料数据库。MSFC 过去常常在高压氢环境中以 0.005 in/in/min 的应变速率进行平滑拉伸试验,以评估材料的 HEE 敏感性。1 根据已发布的 NASA TM 的建议,拉伸试验应变速率近年来改为 0.0005 in/in/min。2 有充分的证据表明,平滑拉伸试验应变速率会影响合金 718、4340 钢、316 不锈钢和许多其他合金的 HEE 敏感性。 1,3–7 因此,以 0.005 英寸/英寸/分钟和 0.0005 英寸/英寸/分钟生成的数据显示,许多合金的 HEE 敏感性存在显著差异。
Inconel 718 是一种镍基超级合金,由于其在高温下具有出色的性能,因此是常用的火箭发动机材料。其疲劳寿命在很大程度上取决于表面粗糙度,因为疲劳会在表面引入和扩展裂纹。Aerojet Rocketdyne 设定的零件标准通常要求表面粗糙度值为 64 至 125 Ra。但是,精加工过程中产生的表面形貌和残余应力也会影响疲劳性能。该项目的具体目标是进行文献综述并编写实验方法,以确定车削、喷砂和抛光产生的表面粗糙度、形貌和残余应力如何累积影响中高周疲劳。现有文献显示,经过固溶处理和时效处理的抛光 Inconel 718 在 500 至 600 MPa 的应力幅度范围内达到高周疲劳状态。此范围将成为为 Aerojet 使用的常见精加工工艺(抛光、车削和喷砂)生成有用的 S-N 曲线的起点。测试方法和分析技术将包括使用 Ambios XP1 触针轮廓仪进行表面粗糙度测量、表面形貌的扫描电子显微镜 (SEM) 成像、完全反向悬臂弯曲疲劳测试和 SEM 断裂分析。解决的安全问题与疲劳测试、喷砂和使用 Kalling 溶液蚀刻 Inconel 718 金相学样品有关。
随着人们对铅 (Pb) 毒性的环保意识日益增强,再加上严格的法规,铅基焊料的使用为无铅焊料合金的发展提供了必然的驱动力。已经进行了许多研究来评估焊料合金和表面处理对焊点可靠性的影响。然而,随着电子设备需求的增加,需要提高焊点的机械性能,以跟上当前电子设备技术的发展。在本研究中,总结了表面处理和冷却速度对使用镍基表面处理的焊点可靠性的影响。该研究重点研究了镍基表面处理 (ENIG 和 ENEPIG),采用不同的冷却介质,慢速(炉)、中速(空气)和快速(水)。研究发现,表面处理的类型和冷却速度可以改变焊料金属间化合物 (IMC) 的形态,并直接改变焊点的机械性能。据报道,更快的冷却速度可以提供更细的 IMC 晶粒,这可能会转化为更好的焊点强度。本文提出的结果可能有助于进一步研究并促进焊点可靠性的改进。关键词:焊料合金、表面光洁度、界面反应、焊点和冷却速率。