摘要:精确的纳米结构几何形状使纳米传感器能够将光学生物分子传递到活细胞内环境,这对于精确的生物和临床治疗非常有吸引力。然而,由于缺乏设计指南来避免光学力和金属纳米传感器在传递过程中产生的光热之间的固有冲突,利用纳米传感器通过膜屏障进行光学传递仍然很困难。在这里,我们进行了一项数值研究,报告了通过设计纳米结构几何形状来显著增强纳米传感器的光学穿透性,以最小化光热产生以穿透膜屏障。我们表明,通过改变纳米传感器的几何形状,可以最大化穿透深度,同时可以最小化穿透过程中产生的热量。我们通过理论分析证明了角旋转纳米传感器对膜屏障产生的横向应力的影响。此外,我们表明,通过改变纳米传感器的几何形状,最大化纳米颗粒-膜界面处的局部应力场使光学穿透过程增强了四倍。由于其高效率和稳定性,我们预计纳米传感器到特定细胞内位置的精确光学穿透将有利于生物和治疗应用。
摘要:实体瘤是全球癌症相关死亡的主要原因,其特点是肿瘤生长迅速、局部和远处转移。癌症治疗失败主要与肿瘤微环境的复杂生物学有关。基于纳米粒子 (NPs) 的方法已显示出克服实体癌病理生理特征所造成的限制的潜力,从而能够开发用于癌症诊断和治疗的多功能系统,并有效抑制肿瘤生长。在不同类型的 NPs 中,基于二维石墨烯的纳米材料 (GBN) 因其出色的化学和物理特性、易于进行的表面多功能化、近红外 (NIR) 光吸收和可调节的生物相容性,代表了开发用于治疗实体瘤的治疗诊断工具的理想纳米平台。本文回顾了基于石墨烯、氧化石墨烯 (GO)、还原氧化石墨烯 (rGO) 和石墨烯量子点 (GQD) 的纳米系统合成的最新进展,用于开发用于光声成像引导的光热化疗、光热 (PTT) 和光动力疗法 (PDT) 的治疗诊断 NP,应用于实体肿瘤破坏。本文讨论了每类 GBN 使用这些纳米系统的优势,同时考虑到不同的化学性质和多功能化的可能性,以及生物分布和毒性方面,这些方面是将其转化为临床应用的关键挑战。
无菌原理:包装材料供应商以单袋设计提供已用环氧乙烷 (ETO) 或蒸汽预灭菌的 RTU 容器。通过使用紫外线闪光,特别是在光谱的 UV-C 范围(100 - 280 nm),微生物会改变其分子结构并断裂共价键。其原因是 DNA 和蛋白质的吸收光谱位于 200 至 300 nm 之间。有两种方法可以消灭微生物:1) 光热效应(温度升高直至爆炸)和 2) 光化学效应(DNA 和蛋白质的改变)。
摘要:额叶聚合(FP)是一种比高压釜低的能量成本的热固性塑料的方法。已经讨论了同时产生多个聚合阵线传播的潜力,这是一种令人兴奋的可能性。但是,尚未证明在同时启动两个以上的FP。多点启动可以使大规模材料制造和独特的图案生成。在这里,作者提出了激光图案的光热加热,作为在2-D样品中多个位置同时启动FP的方法。碳黑色颗粒被混合到液体树脂(双环戊二烯)中,以增强从样品上的Ti:蓝宝石激光(800 nm)中的光吸收。激光是通过在启动点之间快速转向来分配的,从而产生了多达七个同时启动点的聚合。此过程导致形成由正面碰撞导致的对称和不对称接缝图案。作者还提供并验证一个理论框架,以预测前碰撞形成的接缝模式。此框架允许通过反向解决方案设计新模式,以确定形成所需模式所需的启动点。这种方法的未来应用可以使新型复合材料样式材料的快速,节能生产。关键字:额叶聚合,图案材料,光热启动,激光启动,双环齿丹■简介
摘要:癌症是仅次于心血管疾病的世界第二大死亡原因,是当今威胁人类健康的最严重疾病之一。通过使用现代医疗技术,如手术、放疗和化疗,癌症患者的生命得以延长。然而,这些治疗方法并不总是能有效地延长癌症患者的生命。同时,这些方法往往伴随着一系列负面后果,例如出现不良反应和增加复发风险。因此,仍然需要开发一种新的癌症根除策略。纳米医学作为一种有前途的技术的出现为规避传统癌症疗法的局限性带来了一条新途径。尤其是金纳米粒子 (AuNPs),由于其许多特定优势而受到广泛关注,包括可定制的尺寸和形状、多种有用的物理化学性质以及易于功能化。基于这些特性,金纳米粒子已被开发出许多治疗和诊断应用,特别是对于恶性肿瘤,例如药物和核酸输送、光动力疗法、光热疗法和基于X射线的计算机断层扫描成像。为了充分利用金纳米粒子的潜力,这些应用需要全面深入的概述。因此,我们在本综述中以更有条理的方式讨论了金纳米粒子在抗癌应用中的当前成就。还深入讨论了临床试验的现状,以及将一些基本发现转化为临床时可能遇到的困难,以作为未来研究的参考。关键词:金纳米粒子、癌症、药物输送、光热疗法、光动力疗法
在过去的十年中,拉曼光谱已被证明是一种强大的光谱方法,有助于了解纳米级复杂而迷人的能量传输世界。人们开发了各种基于拉曼的方法来测量二维材料和其他纳米级结构的热性能。光热拉曼法常用于确定原子级薄材料(如石墨烯和过渡金属二硫属化合物 (TMD))的界面热阻 (R ″ tc ) 和热导率 (k)。[1–4] 该技术同时使用激光加热样品和拉曼信号表征。温度相关的拉曼信号和 3D 热传导模型用于提取热性能测量值。通过焦耳加热的拉曼测温法同样可以探测界面能量传输和热导率;通过用激光加热代替电流加热源,可以使用物理建模和温度相关的拉曼信号来确定 R ″ tc 。 [5,6] 最近,人们设计了另一种综合光热拉曼方法,使用连续波和脉冲激光来测量二维材料的热性能。[7] 该方法通过比较一系列激光光斑尺寸和脉冲持续时间的不同拉曼温度响应来测量单层和多层石墨烯的 k。此外,双激光拉曼测温法和双波长闪光拉曼映射法分别用于测量二维材料和纳米线的热导率。[8,9]
太阳能收集器和工作流体之间的对流和导电热传递使光热性能有限,并导致从传统吸收剂表面到周围环境的热量损失较高。直接吸收太阳能收集器(DASC)是改进光热性能的有利替代方法。在这项研究中,使用TRNSYS进行了基于纳米结构太阳能收集器的性能的模拟。在这项研究中,通过使用纳米流体和三种不同的纳米结构材料CUO,GO和ZnO,可以改善来自直接太阳能收集器的结缔组织和导电热传递。分析确定了通过直接太阳能收集器的工作流体的出口温度。TRNSYS模型由拉合尔市的直接太阳能收集器和天气模型组成,整整一年进行了1,440小时。使用UV-VIS分光光度计研究了水中这些纳米结构材料的稳定性。确定了直接太阳能收集器的各种性能参数,例如出口收集器温度和传热速率的变化。通过实验结果验证了数值模型。对于基于GO的纳米流体,观察到63°C的最高出口温度。模拟结果表明,全年,纳米流体改善了直接太阳能收集器的性能。与水相比,基于CUO,ZnO的纳米结构的纳米液体观察到23.52、21.11和15.09%的传热率的显着提高,与水相比分别进行。这些纳米结构材料在太阳能驱动的应用中是有益的,例如太阳能脱盐,太阳能水和空间加热。
具有亚微米和同时拉曼光谱能力的Mirage-LS光热红外(O-PTIR)显微镜提供了广泛的大分子特征,可在空间尺度上对材料和生物标本的材料标本<500nm,允许在IR光谱中与亚细胞分辨率在Raman和Raman中匹配的IR光谱,并允许与Raman匹配。Mirage-LS能够成像具有生命科学中多种应用的各种生物学和材料样品,包括癌症研究和药物输送,微塑料,聚合物等。
容量,合适的相变温度和化学稳定性。17 - 20然而,N-烷烃在太阳能利用中的大量应用是在相变期间受到液体泄漏问题的严重限制。将N-烷烃封装以形成核心 - 壳微囊被认为是一种有效的方法。但是,封装过程始终很复杂,并且封装的PCMS的相变焓显着减少。21 - 23因此,迫切需要制造含有高相变焓,形状和热稳定性的PCM的N-烷烃。最近,已引起广泛的关注,以浸入三维(3D)气凝剂中的PCM,以构建形状稳定的防漏PCM复合材料。24 - 26尤其是纳米 - 闪烁的纤维素(NFC)气凝胶不仅可以有效地防止固体 - 液态PCM的泄漏,而且还可以对环境友好。因此,有必要以NFC气凝胶作为支撑材料研究固体 - 液相变化材料。Kim等。 27使用甲基纤维素(CMC)制备的碳泡沫。 此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。 热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。 这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。 Lei等。 28通过准备了一种新颖的CPCMKim等。27使用甲基纤维素(CMC)制备的碳泡沫。此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。Lei等。 28通过准备了一种新颖的CPCMLei等。28通过