基于基于临床研究的临床研究,对肝功能略有限制(儿童天内a)或中等限制肝功能(Child-Pugh B)的患者不需要。同样,基于与流行相关的药代动力学分析,对肝功能易于限制的患者(胆红素的总体≤标准面积的上限[正常,ULN]和天冬氨酸蛋白酶[AST]> ULN或ULN或整体图1至1.5倍和可爱的分支(uln)和中等限制(Yiver)的整体分支1.值)不建议剂量。在严重限制肝功能的患者中尚未检查该药物的安全性和效率。在严重限制的患者严重限制肝功能的患者中不建议进行前术之前(请参阅第5.2节)。
摘要 - 我们提出了Lenzen,Fuegger,Kinali和Wiederhake的电压下垂校正电路的基于闩锁的无PLL设计[1]。这样的电路会动态修改VLSI系统的数字时钟的时钟频率。我们的电路在两个时钟周期内做出响应,并将同步器链的长度减半,而同步链的长度与先前的设计相比。此外,我们引入了一种基于差异传感器的设计,用于掩盖闩锁,以替代[1]所需的设计,但仍未指定。使用闩锁而不是阈值改变的触发器改变了我们设计的时序特性,因此伴随其设计伴随的正确性证明了我们在此处提出的修改。该设计已成功实施,在IHP 130 nm过程技术上。实验测量结果将在随后的出版物中讨论。
人们正在考虑在下一代光刻节点中使用 Ta 基吸收体的替代品,以减少 3D 掩模效应并通过相位干涉改善图像调制。低复折射率 (n-ik) 材料可以在比传统吸收体所需厚度更薄的情况下提供相移行为,本质上充当衰减相移掩模 (attPSM) 膜。确定 attPSM 吸收体厚度和随之而来的相位需要确定最佳相移掩模反射率。使用高反射率吸收体进行成像可显示出更好的成像性能。吸收体厚度是在干涉效应导致高吸收体反射率的地方确定的。因此,低折射率 (n) 材料是理想的 attPSM 吸收体候选材料。使用维纳边界和有效介质近似 (EMA) 建模确定的低 - n 材料组合使用吸收体反射率在线空间和接触孔图案针对 NILS 和 MEEF 进行优化。使用反射近场强度成像将接触孔最佳厚度的吸收体候选物与传统的 Ta 基吸收体进行了比较。
完全集成的量子计算架构 • >8-16 倍更高的复用率,消除了开销 • 内置错误校正 • 降低 1,000 倍的能量和热量耗散 • >10 倍更快的时钟速度 + 更低的延迟 • 降低 128 倍的控制脉冲复杂度 • 超导制造商业化就绪 • 系统组件便宜 400 倍
日期 版本 说明 2009 年 3 月 1.2 更新了图 33.、图 34. 和表 35. 。2009 年 9 月 1.3 添加了表 93。更新了 BOM、表 28.、表 29.、表 34.、表 46.、表 53.、表 61.、表 87.、表 101.、表 113.、表 115.、第 6.3.4.1、9.1、9.3 13.3.3、29.1.2、29.2.2、29.3.2 和 30.1 节。简化了二进制数的书写方式和寄存器位的表示方式。2010 年 4 月 1.4 更新了图 9.、图 10.、图 30.、注意:第 87 页、图 46.、图 51. 和图 52。更新了第 2.1 节、第 12.3 节、第 13.3.1 节、表 14.、表 15.、表 27.、表 58.、表 111.、表 114. 和表 115。更新了第 29 章中的 BOM 信息。2010 年 7 月 1.5 更新了第 77 页的 6.3.5.1、第 109 页的表 57、第 111 页的表 58、第 150 页的表 88 和第 176 页第 24 章中的人体模型类。2010 年 8 月 1.6 添加了 RoHS 声明并更新了第 150 页的表 88。
致突变潜力:甲基强的松龙尚未正式评估其遗传毒性。但是,甲基强的松龙磺酸盐与甲基强的松龙结构相似,在鼠伤寒沙门氏菌中,浓度为 250 至 2,000 µg/板,无论是否经过代谢活化,或在使用中国仓鼠卵巢细胞进行的哺乳动物细胞基因突变试验中,浓度为 2,000 至 10,000 µg/mL,均不具有致突变性。甲基强的松龙舒普坦酸酯在浓度为 5 至 1,000 µg/mL 时,不会在原代大鼠肝细胞中诱导非计划 DNA 合成。此外,对已发表数据的审查表明,结构上与甲基泼尼松龙相似的法呢磺酸泼尼松龙 (PNF) 在鼠伤寒沙门氏菌和大肠杆菌菌株中,无论是否经过代谢活化,在 312 至 5,000 µg/板的浓度下均不具有致突变性。在中国仓鼠成纤维细胞系中,在最高测试浓度 1,500 µg/mL 下,PNF 在经过代谢活化后,结构染色体畸变的发生率略有增加。