目前,正在努力制造由半绝缘材料制成的光电导半导体开关并寻找其潜在应用。本文分析了文献中关于使用 PCSS 开关的参数和可能性,以及目前在电力和脉冲电力电子系统中使用的开关。介绍了基于 GaP 的开关原型模型的实验室测试结果,并将其与文献中的 PCSS 开关参数进行了比较。介绍并讨论了 IGBT 晶体管、晶闸管、光电晶闸管、火花隙和电源开关的工作原理、参数和应用。分析了用 PCSS 开关替换选定元件的可能性,同时考虑了比较器件的优缺点。还讨论了使用目前由磷化镓制成的 PCSS 开关的可能性。
利用宽带隙SiC光电导半导体制备的射频/微波定向能量源由于其高功率输出和多参数可调的独特优势而受到广泛关注。过去几年中,受益于激光技术的持续创新和材料技术的重大进步,利用光电导半导体器件已经在P和L微波波段实现了兆瓦级输出功率、频率灵活的电脉冲。本文主要总结和评述了近年来基于SiC光电导半导体器件在线性调制模式下产生高功率光子微波的最新进展,包括所提出的高功率光子微波源的机理、系统架构、关键技术和实验演示,并讨论了未来利用宽带隙光电导体进行更高功率光子微波多通道功率合成发展的前景与挑战。
光子综合电路使自然科学中的许多领域受益。他们的纳米级图案导致发现了新的来源和从紫外线到微波炉的探测器。到目前为止,Terahertz的技术在光子综合电路提供的设计和材料自由方面几乎没有利用。尽管光电导摄影(在半导体的带子上方吸收光线以产生自由载体的过程)以及迄今为止非线性的上下转换是生成和检测到terahertz波的两种最广泛的方法,到目前为止,Terahertz技术已在Bulk中使用。从这个角度来看,我们讨论了混合光学 - terahertz光子芯片的当前最新,挑战和观点。我们特别关注χ(2)
摘要:黑曜石是一种含有 SiO 2 化合物的非晶态材料,也是从火山中开采出来的。黑曜石的 75% 是由石英组成的。石英是观察压电效应所需的材料。黑曜石最初来自地壳的地幔。当它与空气中的氧气接触时,它会突然凝固,没有任何机会转变为结晶状态。由于这个原因,它变成了非晶态二氧化硅。如果将一些与半导体工艺相关的化学物质(例如氟或氢)连接到硅(a-si:H)中,就会显示出光电导特性。辐射探测器具有吸收能力。在本文中,讨论了黑曜石是否可以作为吸收体用于辐射探测,此外,还评估了黑曜石是否被聚焦在固定目标机器上作为与亚原子粒子的发现相关的固定目标区域。
本工作采用金属有机化学气相沉积(MOCVD)技术分别在GaN模板和蓝宝石衬底上沉积β-Ga 2 O 3 薄膜,制备相应的β-Ga 2 O 3 薄膜金属-半导体-金属(MSM)光电探测器(PD)。比较这两种异质外延β-Ga 2 O 3 薄膜PD的性能,发现氧空位是造成差异的原因。GaN上β-Ga 2 O 3 PD的响应度随叉指间距的增加而增大,而蓝宝石上β-Ga 2 O 3 PD的行为则相反。提出了MSM结构的光电导模型,表明氧空位在上述观察中起着关键作用。同时,氧空位对光生空穴的捕获不仅增强了响应度,而且延迟了响应时间。该工作为异质外延β-Ga2O3薄膜PD的进一步优化奠定了基础。