量子力学 (QM) 的起源可以追溯到 1900 年,当时马克斯·普朗克引入了作用量子,并因此提出了离散能量的非经典概念。1905 年,阿尔伯特·爱因斯坦成功应用量子假设解释光电效应,1913 年尼尔斯·玻尔发展了氢原子模型,此后,维尔纳·海森堡得以发展一种封闭、一致且连贯的数学形式,能够以不变的方式解释实验室中实际观察到的线强度。玻恩和约当认识到海森堡使用的密集数据表实际上是矩阵,而奇怪的乘法规则则揭示了它们的非交换结构。事实上,在寻找描述量子的方法时,海森堡重新发现了一个众所周知的数学领域,即矩阵代数。因此,让我们首先介绍一些有关矩阵的概念和定义。 n × n 复数矩阵是 n × n 个复数的数组。2 × 2 实数矩阵的示例为 1 3 2 − 1
第一单元:现代物理学。 1.1.迈克尔逊-莫雷实验、狭义相对论、时间膨胀、长度收缩、洛伦兹变换、速度总和、相对论质量、质量和能量。 1.2.光电效应、光的量子理论、X射线、康普顿效应、电子对产生。 1.3.德布罗意波、粒子衍射、不确定性原理、波粒二象性。 1.4.原子模型、阿尔法粒子散射、卢瑟福散射公式、电子轨道、原子光谱、玻尔原子、对应原理。 1.5.波动方程,薛定谔方程,应用:盒子中的粒子,谐振子。 1.6.氢原子的薛定谔方程、量子数、选择规则。 1.7.中子,稳定原子核,结合能,液滴模型,层模型。 1.8.放射性、放射性系列、衰变、阿尔法、贝塔和伽马。第 2 单元:量子。 2.2 狄拉克代数和符号。 2.2 量子力学。 2.3 量子计算。 2.4 量子通信。
标题:等离子体-半导体界面处的电离波 名字:戴维 姓名:PAI 实验室:等离子体物理实验室 (LPP) 电子邮件:david.pai@lpp.polytechnique.fr 网页:https://www.lpp.polytechnique.fr/-David-Pai- 研究领域: 主要领域:激光和等离子体物理 次要领域:材料科学 方法:大气压等离子体、表面等离子体、纳秒放电、等离子体诊断(例如光发射光谱、电场诱导的二次谐波产生、汤姆逊散射)、材料化学诊断(例如拉曼和光致发光光谱) 博士课程主题:等离子体-表面相互作用是许多类型等离子体物理学的关键要素。对于非平衡等离子体,其中电子的温度比原子和分子的温度高得多,一种常见的现象是表面电离波 (IW)。使用复合材料代替块体金属/电介质作为电极或传播表面可能会产生新的相互作用。特别是,与半导体相关的光电效应可以使基于微电子中常用的绝缘体上硅 (SOI) 技术的 IW 沿表面传播均匀化。我们的假设是气相和电子空穴 IW 沿 SOI 界面相邻地共同传播。
简介:科学计数法和有效数字。不同系统中的单位。矢量:矢量回顾、矢量导数、线积分和面积分、标量的梯度。力学:坐标系。恒定加速度下的运动,牛顿定律及其应用,匀速圆周运动。涡旋运动,摩擦力。功和能量。势能、能量守恒、能源和我们的环境。静电和磁学:库仑定律、高斯定律、导体周围的电场、电介质。磁场。电流上的磁力。半导体物理学:半导体中的能级、空穴概念、本征区域和非本征区域、质量作用定律、P-N 结、晶体管。波和振荡:具有一个自由度的系统的自由振荡、经典波动方程。连续弦的横模。驻波。波的色散关系。光学与激光:光学和激光的基本介绍。衍射光栅。激光器,粒子数反转。谐振腔。量子效率。氦氖激光器、红宝石激光器和二氧化碳激光器。现代物理学:光电效应、康普顿效应、氢原子的玻尔理论、原子光谱、质量减小、德布罗意假设、布拉格定律、电子显微镜、塞曼效应、原子核、质能关系、结合能、核力和基本力、指数衰减和半衰期。
旅行者的故事 计划假期时,首先要考虑的可能是展示阳光普照的海滩和湛蓝海水的精美旅行手册。但现在,对于那些在度假时无法忍受将注意力从物理上转移的人来说,可以查阅《物理游客:旅行者的科学指南》。这本书由华盛顿大学物理学家约翰·里格登和明尼苏达大学物理学家罗杰·斯图尔编辑,介绍了欧洲和美国 11 个城市的历史物理学景点。如果你碰巧在伯尔尼,你可能想参观爱因斯坦提出布朗运动、光电效应和狭义相对论的地方专利局。爱丁堡的物理学亮点包括默奇斯顿城堡 - 对数发明者约翰·纳皮尔的出生地和故乡 - 而巴黎则拥有居里博物馆,里面有这位诺贝尔奖获得者的办公室和实验室。然而,究竟谁会愿意去参观这本书挑选的物理学家的坟墓,比如位于布达佩斯凯雷佩西公墓的罗兰·冯·厄特沃什 (Roland von Eötvös) 的坟墓,这仍然是一个可怕的谜。
DSC 5:量子力学简介单元3教学大纲:简要讨论古典物理学解释黑体辐射,光电效应,康普顿效应,原子的稳定性和原子光谱。康普顿散射:Compton Shift的表达(带推导)。物质波:物质波,电子显微镜,波数据包的颗粒的波浪描述,组和相位速度的波浪描述,物质波的实验证据:Davisson-Germer实验,G.P Thomson的实验及其意义。海森伯格不确定性原理:海森堡动量与位置,能量和时间,角动量和角位置之间关系的基本证明,伽玛射线显微镜思维实验的不确定性原理的说明。不确定性关系的后果:电子在单个缝隙中的衍射,核中电子的不存在。对光子和电子的两缝实验。线性叠加原理因此。_______________________________________________________________________________________ Brief discussion on failure of classical physics to explain black body radiation, Photoelectric effect, Compton effect, stability of atoms and spectra of atoms.古典力学无法解释以下现象:1)它在原子维度的区域中不存在,即无法解释
Indrajit Chakraborty, 1 Zhanhu Guo, 2 Anirban Bandyopadhyay 3 和 Pathik Sahoo 3, 4, 5* 摘要 在为特定特征设计材料时,除了考虑化学能力之外,考虑物理尺寸变得越来越重要。材料的物理尺寸、光学特性、表面积和机械特性都在决定其光化学能力方面发挥作用。在二维 (2D) 材料中,光电效应的表面积和光化学反应中均匀电荷分布的长距离电导率达到完美平衡。迄今为止,已经研究了各种各样的 2D 材料:低成本、稳定、地球资源丰富且无危害。然而,必须提高光催化剂的效率以满足现代社会日益增长的绿色能源需求。光催化剂特别感兴趣的是将太阳能储存在化学键中以提供长期能量。各个领域的研究人员最近都做出了贡献,包括适当地在空间中排列光催化反应中心、通过修改物理结构和化学功能来调整带隙、使用机器学习协议以及在制备催化剂之前计算密度泛函理论 (DFT)。本综述将介绍修改二维材料的最新贡献,以将开发用于水氧化的光催化剂的集体努力联系起来。此外,在结论部分,我们将强调正在进行的工作的视角、挑战和维度。
使用多层结构实现了空气中正极表面等离子体在空气中的均匀传播,该结构由硅晶片组成,由1 µm厚的介电SiO 2层作为传播表面覆盖。而不是在使用常规散装电介质表面时在相同条件下观察到的分支流媒体,该等离子体表现出具有高度可重复性和稳定性的同质环形结构。血浆是通过在接触介电表面的钨电线上施加纳秒正脉冲来产生的。血浆以高空间分辨率进行单射击操作成像,紫外反射显微镜以及快速加强的电荷耦合耦合器件摄像头。时间和空间分辨的光学发射光谱表明,均匀的环对应于具有高N 2 + *发射区域的电离前端的传播。我们讨论了环形电离波的起源,考虑到Si-Sio 2界面的作用以及外部光源照明的效果。环电离波可能是由于分支抑制作用而导致的,这是由于在血浆发出的光子产生的界面处的光电效应。在大气压力下的环境空气中,稳定均匀的表面电离波的产生可能引起进一步的晚期等离子表面相互作用研究或流动控制应用。
可以使用调幅激光在 MEMS 麦克风的输出端生成虚假但相干的声学信号。虽然这种漏洞会对信任这些麦克风的网络物理系统的安全性产生影响,但这种影响的物理解释仍然是个谜。如果不了解导致这种信号注入的物理现象,就很难设计出有效可靠的防御措施。在这项工作中,我们展示了热弹弯曲、热扩散和光电流产生机制在多大程度上被用于将信号注入 MEMS 麦克风。我们为每种机制都提供了模型,开发了一种程序来经验性地确定它们的相对贡献,并强调了对八种商用 MEMS 麦克风的影响。我们通过使用几种激光波长和一个真空室的精确设置来隔离每种机制来实现这一点。结果表明,麦克风上的注入信号取决于入射光的波长,其中长波长(例如 904 nm 红外激光)利用 ASIC 上的光电效应,而短波长(例如 450 nm 蓝色激光)利用振膜和周围空气上的光声效应。根据这一理解,我们为未来的抗激光麦克风设计提出了建议,包括改进球顶应用、减少 MEMS 结构内的材料不对称性,以及添加简单的光或温度传感器以进行注入检测。基于根本的因果关系,我们还指出了具有与 MEMS 麦克风相似特性的其他传感器中可能存在的漏洞,例如传统麦克风、超声波传感器和惯性传感器。
伽玛射线与物质互动©M。Ragheb 6/13/2024 1。引言与物质相互作用的伽玛相互作用从屏蔽它们对生物物质的影响的角度很重要。它们被认为是电离辐射,其电子和核的散射导致产生含有负电子和正离子的辐射场。与物质相互作用的相互作用的主要模式是其光电和光核形式,康普顿散射和电子正电子对产生的照片效果。在较小的程度上,还会出现光合作用,瑞利散射和汤姆森散射。这些过程中的每一个都以不同的形式出现。可能会根据伽马光子的量子力学特性而发生不同类型的散射。电子正电子对可以在核和电子的场中形成。光电效应可以消除原子电子,而光核反应会从细胞核中淘汰基本颗粒。伽马射线在放射性同位素的衰减过程中发出。在宇宙尺度上,伽玛射线爆发(GRB)或磁铁产生可能影响太空旅行和探索的强烈伽马辐射场。此外,由于雷暴的结果,大气中的地面伽马射线闪光爆发(TGF)的爆发相对较高,并且并非来自地面上看到的伽马射线的相同来源。每月观察到大约15至20个这样的事件。伽玛射线气泡。2。伽马光子能量零休息质量(例如伽马光子)的粒子将具有: