将这两个设备共用一个电极进行组装在某些应用中会很有趣,在这些应用中,设备形状因素、便携性和能量生产和存储的分散性是比整体工艺效率更重要的特性。太阳能电化学储能 (SEES) 概念首次由 Hodes 于 1976 年提出 [1],基于光电化学电池,使用 CdSe 作为光电极、S/S − 2 作为氧化还原电解质和 Ag 2 S/Ag 作为阳极。同时报道的太阳能水分解 [2] 和高级氧化过程 [3] 取代了太阳能电化学储能系统的先驱研究,它们取得了更有希望的结果,并且太阳能的利用效率更高。然而,由于社会政治对分散和可持续能源的要求以及电化学能源电源(特别是锂离子电池)和光伏电池(如染料敏化和钙钛矿太阳能电池)的技术进步,近十年来人们对这些研究的兴趣有所增加。尽管人们重新燃起兴趣,但基于插层离子电池的 SEES 系统研究仍然很少。在 21 世纪初期,SEES 系统基于染料敏化太阳能电池。在这些系统中,电解质含有氧化还原对 I 3
概念思想:1.) 确定 ℏ𝜔 的光电发射状态。2.) 计算每对状态的光电发射概率。3.) 计算本征发射率作为光电发射状态的加权平均值 4.) 对新的 ℏ𝜔 重复上述操作。
“刚刚接受”的手稿已经过同行评审并被接受出版。它们在技术编辑、出版格式和作者校对之前在线发布。美国化学学会向研究界提供“刚刚接受”服务,以加快科学材料在被接受后尽快传播的速度。“刚刚接受”的手稿以 PDF 格式完整出现,并附有 HTML 摘要。“刚刚接受”的手稿已经过完全同行评审,但不应被视为记录的官方版本。它们可以通过数字对象标识符 (DOI®) 引用。“刚刚接受”是提供给作者的一项可选服务。因此,“刚刚接受”网站可能不包含将在期刊上发表的所有文章。手稿经过技术编辑和格式化后,将从“刚刚接受”网站上删除并作为 ASAP 文章发布。请注意,技术编辑可能会对手稿文本和/或图形进行细微更改,这可能会影响内容,并且适用于期刊的所有法律免责声明和道德准则均适用。 ACS 对因使用这些“刚刚接受”稿件中包含的信息而产生的错误或后果不负任何责任。
太阳能驱动水分解的持久性能和高效率是光电化学 (PEC) 电池尚未同时实现的巨大挑战。虽然由 III-V 族半导体制成的光伏电池可以实现很高的光电转换效率,但它们与电催化剂的功能集成以及工作寿命仍然是巨大的挑战。在此,超薄 TiN 层被用作埋层结 n + p-GaInP 2 光电阴极上的扩散屏障,使得随后的 Ni 5 P 4 催化剂生长为纳米岛时能够升高温度,而不会损坏 GaInP 2 结。所得 PEC 半电池的吸收损失可以忽略不计,饱和光电流密度和 H 2 释放量与用 PtRu 催化剂装饰的基准光电阴极相当。高耐腐蚀 Ni 5 P 4 /TiN 层在 120 小时内显示出不减损的光电阴极运行时间,超过了之前的基准。通过蚀刻去除电沉积铜(引入的污染物),恢复了全部性能,证明了操作耐用性。 TiN 层扩大了合成条件并防止腐蚀,使 III-V PEC 设备稳定运行,而 Ni 5 P 4 催化剂则取代了昂贵且稀缺的贵金属催化剂。