* 通讯作者:Tobias Heindel,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404X Lucas Rickert、Daniel A. Vajner、Martin von Helversen、Sven Rodt 和 Stephan Reitzenstein,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:lucas.rickert@tu-berlin.de(L. Rickert)。https://orcid.org/0000-0003-0329-5740(L. Rickert)。https://orcid.org/0000-0002-4900-0277(DA Vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838 (S. Reitzenstein) Kinga Żołnacz,弗罗茨瓦夫科技大学光学与光子学系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0002-1387-9371 刘汉清,李树伦,倪海桥,牛志川,中国科学院半导体研究所光电材料与器件重点实验室,北京 100083;中国科学院大学材料科学与光电工程中心,北京 100049,E-mail: zcniu@semi.ac.cn (Z. Niu)。 https://orcid.org/0009-0004-7092-2382(H.刘)。 https://orcid.org/0000-0002-9566-6635 (Z. Niu) Paweł Wyborski,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰;丹麦技术大学电气与光子工程系,2800,Kgs.,Lyngby,丹麦 Grzegorz Sęk 和 Anna Musiał,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0001-7645-8243(G. Sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)
通过光纤传输到光纤分路器,大约 1% 的功率从那里传输到监控探测器。剩余 99% 的功率传输到用于比较的参考光纤电缆。NIST 参考标准是电校准热释电辐射计 (ECPR),该辐射计先前已根据主要标准 NIST 激光优化低温辐射计 (LOCR) 进行了校准。ECPR 由覆盖有金黑色涂层的热探测器组成。在 1300 nm-1550 nm 的波长区域内,ECPR 的响应与入射辐射的波长无关 [12]。NIM 测量系统类似于 NIST 系统。它由波长为 1301.2 nm 和 1549.2 nm 的光纤尾纤激光源、参考光纤电缆以及用于比较 NIM 参考和传输标准的定位台组成。 NIM 参考标准,电校准绝对辐射计 (ECAR) 是一种已根据 NIM 低温辐射计校准的热设备。
检测低功率和高功率光的短脉冲 能够在恶劣环境和很宽的温度范围内工作 大动态范围 在感应到明亮目标后,快速过载恢复以检测后续信号 承受高光功率密度,提高探测器的损伤阈值 除了这些标准之外,许多 LRF 和 LiDAR 系统设计都会受益于在传输和接收过程中使用光纤,以改善系统热管理并降低整体系统噪音 (1) 。许多国防应用都需要商用现货 (COTS) 组件,因为 COTS 更容易获得且更具成本效益。CMC 推出了一系列新的 COTS 尾纤 SMT 封装铟镓砷 (InGaAs) 雪崩光电二极管 (APD) LIDAR/LRF 接收器,276-339832-VAR,根据 MIL-STD 规格进行设计、测试和验证。这款 COTS APD 接收器提供的性能可以更准确地检测更长距离的小目标。坚固的光纤尾纤封装有利于节省空间和简化系统集成,同时满足 MIL-STD 环境操作条件。
高维光子态 (qudits) 对于提高量子通信的信息容量、噪声鲁棒性和数据速率至关重要。时间箱纠缠量子位元是通过光纤网络实现高维量子通信的有希望的候选者,其处理速率接近传统电信的速率。然而,它们的使用受到相位不稳定性、时间不准确性以及时间箱处理所需的干涉方案的低可扩展性的阻碍。同样,增加每个光子状态的时间箱数量通常需要降低系统的重复率,进而影响有效量子位元速率。在这里,我们展示了一个光纤尾纤集成光子平台,该平台能够通过片上干涉系统在电信 C 波段生成和处理皮秒间隔的时间箱纠缠量子位元。我们通过实验演示了具有时间纠缠量子的 Bennett-Brassard-Mermin 1992 量子密钥分发协议,并通过展示维度缩放而不牺牲重复率,将其扩展到 60 公里长的光纤链路。我们的方法能够以标准电信通信的典型处理速度(10 GHz 的 GHz 速度)操纵时间纠缠量子,并且每个单频信道具有高量子信息容量,这代表着朝着在标准多用户光纤网络中高效实现高数据速率量子通信迈出了重要一步。