该研究的目的是确定硫化镍薄膜的光学特性,即,来自化学浴沉积方法(CBD)的反射率,吸光度,透射率和能量带隙,与几个波长相关,并与各种紫外线(UV)范围相关,以确定其潜在的效果。使用硫酸盐,硫代硫酸钠和三乙醇胺(TEA)溶液,将镍硫化物薄膜化学沉积。基于Avantes单光束扫描UV-SpectroPhotopormeter,NIS薄膜的光学特性,这是光谱吸光度,反射率和透射率。发现NIS薄膜在所需的波长紫外线范围内具有很高的透明度,用于光疗的应用,低吸收系数可最大程度地减少能量损失和最大化增益,低反射可用于最大程度地减少反射损失,并最大程度地减少光耦合效率和1.98 EV的能量带差异,使其具有1.98 EV的evap em emememememecondoctor材料。nis薄膜中的薄膜被证明具有光疗中光放大器的所需特性特性。
摘要:随着对在各个领域的单光子水平检测光的需求不断增长,研究人员致力于通过使用多种方法来优化超导单光子检测器(SSPD)的性能。但是,可见光的输入光耦合在有效SSPD的发展中仍然是一个挑战。为了克服这些局限性,我们开发了一种新型系统,该系统将NBN超导微孔光子检测器(SMPD)与Gap-plasmon reso-nators整合在一起,以将光子检测效率提高到98%,同时将所有检测器性能特征(例如偏振性无敏化)保留。等离子SMPD表现出热带效应,与在9 K(〜0.64 t C)下运行的可见范围内产生非线性光响应,与在CW Illumination CW下的原始SMPD相比,声子 - 电子相互作用因子(γ)增加了233倍。这些发现为在可见的波长下的量子信息处理,量子光学元件,成像和感测等领域提供了超敏感单光子检测的新机会。关键字:单光子检测,可见光,间隙 - 平面共振,超导光电探测器,NBN,非线性光载质
摘要 光学超表面是平面纳米结构器件,具有工业吸引力,部分原因是它们利用高通量微电子制造技术来实现。因此,开发能够平衡高效波前响应实现和器件可制造性的设计范例至关重要。我们引入了一种基于梯度的自由曲面超表面设计框架,其中纳米级元素明确限制为基本形状、几乎均匀的特征尺寸和极低的纵横比。尽管超表面几何特征看似均匀,但这些器件能够利用非局部近场光耦合实现超越传统设计方法的高效和极端波前散射。利用这种方法,我们设计了简单的高数值孔径器件,例如能够实现衍射极限聚焦的光束偏转器和大面积超透镜。我们预计这些概念可以促进超表面的设计和集成到单片光学系统中。
1 简介 隔离器是一种电子设备,它向控制器传输数字信号,同时还提供电流隔离,为用户界面和低压电路提供安全的电压水平。它们具有广泛的应用,包括工业、汽车、消费和医疗电子产品,每种产品都需要特定的最低隔离水平。隔离的基本形式是由光耦合、电容耦合和磁耦合提供的 [1]。隔离器必须通过多项监管标准才能投放市场。这些标准包括可靠性测试,如耐压和浪涌电压以及高压耐久性 (HVE)。耐压和浪涌电压是相对较快的持续时间测试,但 HVE 可能需要几个月到几年才能完成 [2]。本研究基于对磁耦合隔离器中使用的材料的隔离能力的评估。为了更好地管理隔离器的可靠性测试,最好事先优化组件材料。在这项工作中,我们讨论了加工效应对隔离器中使用的各种材料的影响,并
grin(dex中的gr Adient)镜头可以替代玻璃透镜上经常艰苦的抛光曲率手工艺。通过逐渐改变镜头材料中的折射率,光线可以平稳,不断地重定向到聚焦点。索引“梯度”的内部结构可以大大减少对紧密控制的表面曲率的需求,并导致简单,紧凑的透镜几何形状。梯度指数技术的关键在于折射率的受控变化。这是通过玻璃宿主材料中的高温离子交换过程实现的。由Go!Foton制造的自动镜头是由独特的离子交换过程产生的,该工艺产生的索引梯度比生产中当前使用的任何其他方法都更强。使用自助技术,光学工程师和研究人员可以在镜头的物理表面上形成真实的图像。这为将光耦合到光纤或通过内窥镜传递图像创造了独特的可能性。具有多种选择,包括AR(反射)涂层,金属化和倾斜的刻面,可以定制用于应用程序的Selfoc镜头。
摘要 - 这项研究对近紫外光谱中的低语画廊模式(WGM)微球光学特性进行了全面分析,并通过频率锁定来减少激光线宽的实际实现。由于利用了坚固的角度抛光纤维,可以实现光耦合,从而探索了各种耦合行为。固有的Q 0-因子,在2下测量。2×10 8,以及7个技巧。3×10 4,在420 nm处报告。讨论了导致Q 0-因素的物理机制,并绘制了改善性能的路线。通过将频率锁定到WGM微孔的高Q共振上,已经获得了外部空腔二极管激光从887 kHz降低到91 kHz的线宽。对这些结果的研究将绩效评估带来,从而对局限性有透彻的了解并确定增强降噪的潜在途径。如此高的Q因子和高技巧是简化基于WGM微孔子的光子设备的关键要素。
近年来,随着互联网数据流量的急剧增加,在数据中心实现高速低成本的光传输技术具有巨大的商业价值[1-5]。为了提高互联数据传输的速度,在单个硅芯片上集成半导体激光二极管、光调制器、多路复用器、波导、光电探测器等的 PIC 的构想应运而生[6-8]。此外,在硅平台上集成 PIC 或光电集成电路 (OEIC) 的硅光子学因具有低成本、大面积衬底的优势以及与先进制造和硅互补金属氧化物半导体 (CMOS) 制造技术的兼容性而引起了极大的兴趣[9]。与最先进的 InP 基 PIC [10-12] 相比,Si 基 PIC 被认为是另一种有前途的节能解决方案,它可以将收发器成本从目前每千兆比特每秒 (Gb/s) 输入/输出 (I/O) 带宽几美元降低到每 Gb/s 不到几美分 [13-15]。最近,尽管片外发光源具有高温性能和高发光效率的优势,但由于封装成本降低和光耦合效率提高,片上光源的重要性得到了强调 [16]。此外,片上光源具有在单个芯片上实现密集集成的潜力,并且在能效和可扩展性方面具有更好的性能。
硅在半导体技术中的蓬勃发展与控制其晶格缺陷密度的能力密切相关 [1]。在 20 世纪上半叶,点缺陷被视为对晶体质量的危害 [2],如今它已成为调节这种半导体电学性质的重要工具,从而推动了硅工业的蓬勃发展 [1]。进入 21 世纪,硅制造和注入工艺的进步引发了根本性变革,使人们能够在单个层面上控制这些缺陷 [3]。这种范式转变将硅带入了量子时代,如今单个掺杂剂被用作可靠的量子比特来编码和处理量子信息 [4]。这些单个量子比特可以通过全电方式有效控制和检测 [4],但其缺点是要么与光耦合较弱 [5],要么发射中红外波段的辐射 [6],不适合光纤传播。为了分离具有光学接口的物质量子比特,从而实现量子信息的长距离交换,同时又能从先进的硅集成光子学中获益 [7],一种策略是研究在近红外电信波段具有光学活性的硅缺陷 [8, 9]。
未来十年将投入使用。为了跟上这些能力,天文仪器必须经历巨大的转变。当今最大的望远镜主要配备由传统光学器件组成的仪器。然而,将这些仪器和光学系统升级以适应未来的大型望远镜,将在结构和经济上具有挑战性且不可持续。集成光子学可以满足对天文仪器的特殊要求,因为它们占用空间小、可以灵活地操纵光并易于大规模制造。另一项技术推动因素是成功将斯巴鲁极端自适应光学 (AO) 系统的光耦合到单模光纤 [2]。随着大型望远镜将 AO 的极限推向近衍射极限,这些光子装置可以使用光纤有效地捕获 AO 校正后的光。天文光子学是光子学和天文学的接口。这一快速发展的领域提供了广泛的光学解决方案,包括天空背景过滤、高分辨率成像和光谱学。在过去的几十年里,实验室测试以及几次天空演示都取得了令人鼓舞的进展